Occupation of the t2g orbitals gives a little extra stabilization of the complex. Ligand Field Stabilization Energy (LFSE). d electron configurationOh Field ...
LigandFieldTheory
CrystalFieldTheory
Anionicapproachtounderstandingbondingintransitionmetalcomplexes
Assumptions
Metalionsaretreatedaspointcharges
Ligandsaretreatedaspointchargesorpointdipoles
dorbitalsonthemetalareconsideredbutligandorbitalsareignored
Theelectrostaticsofthemetalandligandscreatesanelectricfield,denotedV,thatistreatedasaperturbationintheHamiltonian
describingtheenergiesofthedelectrons.
Inthecaseofagasphase,octahedralcomplexV=Vsphere+Voct
Vsphereraisestheenergiesofallthedorbitalsthesameamount,essentiallyresettingthe"zero"ofenergy
Themathismessy,butthesolutionoftheperturbationequationgivestwofactorsthatarethesameforallofthedelectrons:
D=35Ze2/4(4πεo)a4
q=2/105
sothatDq=[1/6][Ze2/4πεoa5]
whereZisthechargeonthemetalion(+1,+2,etc)
eisthechargeontheelectron=1.602×10–19C
risthedistanceofthedelectronfromthemetalnucleus;indicatestheaverageofthedistancetothefourthpower
aisthedistancebetweenthemetalandtheligand
εoisthepermittivityoffreespace;4πεo=1.113×10–10
J–1C2m–1
Solvingforeachindividualdorbitalgives:
E(dz2)=E(x2–y2)=+6Dq
E(dxy)=E(xz)=E(yz)=–4Dq
Graphically:
Δo=10Dq=CrystalFieldSplitting
Orderofmagnitudeof10Dq:
ForZ=+2,r=1Å,anda=2Å,10Dq~145kJ/mol,i.e.thisisontheorderofweakcovalentbondenergies
Occupationofthet2gorbitalsgivesalittleextrastabilizationofthecomplex
LigandFieldStabilizationEnergy(LFSE)
delectronconfigurationOhFieldconfiguration
LFSEunpairedspins
d1t2g1
4Dq1
d2t2g2
8Dq2
d3t2g3
12Dq3
d4t2g4
16Dq–P2(lowspin)
d4t2g3eg1
6Dq4(highspin)
d5t2g5
20Dq–2P1(ls)
d5t2g3eg2
0Dq5(hs)
d6t2g6
24Dq–2P0(ls)
d6t2g4eg2
4Dq4(hs)
d7t2g6eg1
18Dq–P1(ls)
d7t2g5eg2
8Dq3(hs)
d8t2g6eg2
12Dq2
d9t2g6eg3
6Dq1
d10t2g6eg4
0Dq0
P=spinpairingenergy:thisenergyisnotincludedforanyrequiredspinpairing
hs=highspin
ls=lowspin
UsingGroupTheory
Thenumberofenergylevelsanddegeneraciesforanygivengeometrycanbereadilyobtainedusinggrouptheory.
Thetransformationpropertiesofthedorbitalsgivestheirreduciblerepresentations,whichwilleachbeofadifferentenergy.
InthecaseofanOhcomplex,thedorbitalstransformast2g+eg,whichareeasilyidentifiedbylooking
atthequadraticbasisfunctionsonthefarrightofthecharactertable.
OhCharacterTable
Oh
E
8C3
6C2
6C4
3C2(=C42)
i
6S4
8S6
3σh
3σd
a1g
1
1
1
1
1
1
1
1
1
1
x2+y2+z2
a2g
1
1
–1
–1
1
1
–1
1
1
–1
eg
2
–1
0
0
2
2
0
–1
2
0
(2z2–x2–y2,x2–y2)
t1g
3
0
–1
1
–1
3
1
0
–1
–1
(Rx,Ry,Rz)
t2g
3
0
1
–1
–1
3
–1
0
–1
1
(xy,yz,xz)
a1u
1
1
1
1
1
1–
–1
–1
–1
–1
a2u
1
1
–1
–1
1
–1
1
–1
–1
1
eu
2
–1
0
0
2
–2
0
1
–2
0
t1u
3
0
–1
1
–1
–3
–1
0
1
1
(x,y,z)
t2u
3
0
1
–1
–1
–3
1
0
1
–1
Thismakesiteasytoidentifyorbitaldegeneracyforanygeometry.Grouptheorydoesnotindicatetheenergyorder.
NonoctahedralComplexes
Labelingtheorbitals:whenthesymmetrydropsbelowOhlabelingthedorbitalsast2gandeg
isnolongerappropriateorcorrect.Identifyingthecorrectpointgroupandthenusingthecorrespondingcharactertable
quicklygivesthecorrectirreduciblerepresentationstolabeltheorbitals.
AsecondwaytodothisistouseaCorrelationTable,whichshowstheconnectionbetweenthelabelsofvariouspointgroups.
PointGroup:
Oh
D4h
C4v
D2d
D3
Td
IrreducibleRepresentation:
eg
a1g+b1g
a1+b1
a1+b1
e
e
IrreducibleRepresentation:
t2g
b2g+eg
b2+e
b2+e
a1+e
t1
Grouptheorydoesnotgiveustherelativeenergiesoftheorbitals,however.
Consideratetragonalcase:
Needtointroduceadditionalparameters,δ1andδ2
ThesituationissuchthatE(dx2–y2)–E(dxy)=10Dq
(movingtheligandalongthezaxisshouldhavenoeffectontherelativeenergiesoftheorbitalsinthexyplane).
Forcompressioncase:
[E(dx2–y2)+δ2]–[E(dxy)+2δ1]=10Dq
[E(dx2–y2)–E(dxy)]+δ2–2δ1=10Dq
10Dq+δ2–2δ1=10Dq
δ2=2δ1
Canwepredictwhenthiswillhappen?Yes,usingtheJahn-Tellertheorem
Jahn-TellerTheorem:Inanonlinearmoleculeadegenerateelectronicstatewilldistorttoremove
thedegeneracyandtoincreasethestability
Considerd1
InanOhgeometry,theelectronicstateistriplydegenerate(thesingleelectroncanbeinoneofthreeorbitalsofidenticalenergy).
Axialelongationgivesastatethatisstilldegenerate(doubly)sowouldneedtofurtherdistort.
Axialcompressionleadstoasinglydegeneratestateandincreasedstability.
LFSE=–4Dq–2δ1
Thisshouldoccurevenifalltheligandsarethesame!
WhichconfigurationsshouldbeJ-Tactive?
configuration
active?
distortiongeometry
d1
yes
compression
d2
yes
elongation
d3
no
d4(hs)
yes
either
d4(ls)
yes
compression
d5(hs)
no
d5(ls)
yes
elongation
d6(hs)
yes
compression
d6(ls)
no
d7(hs)
yes
elongation
d7(ls)
yes
either
d8
no
d9
yes
either,(nearlyalwaysiselongation,oftentoCN=4)
d10
no
TetrahedralComplexes
TetrahedralsymmetryisfairlycommonbutcannotbetreatedasadistortionfromOh
Ligandsbetweenaxesaredestabilized,ligandsalongaxesarestabilized.
ThesplittinginTdcomplexesisalwayslessthanthesplittinginOhcomplexeswiththesameligands
(ΔtZn2+
Spectrochemicalseries
ligandsorderedbyrelativesizeofDqforanymetalionligandsorderedbyligandfieldstrength
I–