多媒體資料庫(New)3rd

文章推薦指數: 80 %
投票人數:10人

多媒體資料庫(New)3rd. 1. 多媒體資料庫; 2. 提綱

  • 簡介
  • 多媒體資料庫的挑戰
  • 多維度索引技術
  • 文件資料 ... SlideShareusescookiestoimprovefunctionalityandperformance,andtoprovideyouwithrelevantadvertising.Ifyoucontinuebrowsingthesite,youagreetotheuseofcookiesonthiswebsite.SeeourUserAgreementandPrivacyPolicy. SlideShareusescookiestoimprovefunctionalityandperformance,andtoprovideyouwithrelevantadvertising.Ifyoucontinuebrowsingthesite,youagreetotheuseofcookiesonthiswebsite.SeeourPrivacyPolicyandUserAgreementfordetails. Upload Home Explore Login Signup Successfullyreportedthisslideshow. Activateyour30dayfreetrial tounlockunlimitedreading. 多媒體資料庫(New)3rd 4 Share KevingoTsai • Dec.08,2008 • 4likes • 3,898views DownloadNow Download NextSlideShares Youarereadingapreview. Activateyour30dayfreetrial tocontinuereading. ContinueforFree UpcomingSlideShare 那些年,我們一起Open的data Loadingin…3 × Facebook Twitter LinkedIn Size(px) Starton ShowrelatedSlideSharesatend Share Email     Topclippedslide 1 1of238 多媒體資料庫(New)3rd Dec.08,2008 • 4likes • 3,898views 4 Share DownloadNow Download Downloadtoreadoffline Technology Business KevingoTsai Follow SoftwareEngineer Technology Business 那些年,我們一起Open的data KevingoTsai Must-have!PMTools(Nov2010) JesseGant PhDPresentation mskayed DataPreprocessing Object-FrontierSoftwarePvt.Ltd Classification guest9099eb SpatiallyCoherentLatentTopicModelForConcurrentObjectSegmentationand... Shao-ChuanWang DefensePowepoint KasturiChatterjee Lec1-Into butest Ch9-1.MachineLearning:Symbol-based butest Lecture2 butest 那些年,我們一起Open的data KevingoTsai Must-have!PMTools(Nov2010) JesseGant PhDPresentation mskayed DataPreprocessing Object-FrontierSoftwarePvt.Ltd Classification guest9099eb SpatiallyCoherentLatentTopicModelForConcurrentObjectSegmentationand... Shao-ChuanWang DefensePowepoint KasturiChatterjee Lec1-Into butest Ch9-1.MachineLearning:Symbol-based butest Lecture2 butest MoreRelatedContent YouMightAlsoLike WALDLECTURE1 butest Slides butest IntroductiontoMachineLearning butest KnowledgebasedexpertsystemsinBioinformatics RadwenAniba 얼굴검출기법감성언어인식기법 cyberemotions Iccv2009recognitionandlearningobjectcategoriesp1c01-classicalmethods zukun Cvpr2007objectcategoryrecognitionp3-discriminativemodels zukun Cvpr2010opensourcevisionsoftware,introandtrainingpartvopencvandr... zukun Podobnostníhledánívnetextovýchdatech(PavelZezula) Národnítechnickáknihovna(NTK) ADAPTINGMETRICSFORMUSICSIMILARITYUSINGCOMPARATIVERATINGS DanielWolff Fcvbiocv_cottrell zukun Fcvbiocv_cottrell zukun ScaledEigenAppearanceandLikelihoodPrunningforLargeScaleVideoDuplica... UnitedStatesAirForceAcademy Mit6870orsulecture2 zukun Dbm630lecture05 TokyoInstituteofTechnology Semantic3DTVContentAnalysisandDescription DistinguishedLecturerSeries-LeonTheMathematician IJERD(www.ijerd.com)InternationalJournalofEngineeringResearchandDevel... IJERDEditor 1617bag_words khawarbashir Chapter-5DataMiningConceptsandTechniques2ndEdslidesHan&Kamber error007 K-Means,itsVariantsanditsApplications VaradMeru Associations1 mancnilu Preprocessing mmuthuraj Graphminingseminar_2009 HouwLiongThe bag-of-wordsmodels XiaotaoZou MiningFrequentPatterns,AssociationandCorrelations JustinCletus BasicsofMachineLearning PranavChalla DMLecture3 asad199 My3prep asad199 DataMining:ConceptsandTechniques_Chapter6:MiningFrequentPatterns,... SalahAmean AnIn-DepthEvaluationofMultimodalVideoGenreCategorization IonutMironica Lecture10mingyang-facerecognitionsystems mustafasarac DeepLearning-인공지능기계학습의새로운트랜드:김인중 datasciencekorea 1.11.associationmining3 Krish_ver2 Conceptbasedshorttextclassificationandranking 祺傑林 DMTM2015-13Naivebayes,NearestNeighboursandOtherMethods PierLucaLanzi Textclustering CEG,AnnaUniversity,Chennai gilbert_iccv11_paper AndrewGilbert Report ChrisWatts AJuliapackageforiterativeSVDswithapplicationstogenomicsdataanalysis JiahaoChen Datapreprocessing TonyNguyen RelatedBooks Freewitha30daytrialfromScribd Seeall SoYouWanttoStartaPodcast:FindingYourVoice,TellingYourStory,andBuildingaCommunityThatWillListen KristenMeinzer (3.5/5) Free Bezonomics:HowAmazonIsChangingOurLivesandWhattheWorld'sBestCompaniesAreLearningfromIt BrianDumaine (4.5/5) Free Autonomy:TheQuesttoBuildtheDriverlessCar—AndHowItWillReshapeOurWorld LawrenceD.Burns (5/5) Free NoFilter:TheInsideStoryofInstagram SarahFrier (4.5/5) Free TalktoMe:HowVoiceComputingWillTransformtheWayWeLive,Work,andThink JamesVlahos (4/5) Free SAM:OneRobot,aDozenEngineers,andtheRacetoRevolutionizetheWayWeBuild JonathanWaldman (5/5) Free FromGutenbergtoGoogle:TheHistoryofOurFuture TomWheeler (3.5/5) Free TheFutureIsFasterThanYouThink:HowConvergingTechnologiesAreTransformingBusiness,Industries,andOurLives PeterH.Diamandis (4.5/5) Free LifeAfterGoogle:TheFallofBigDataandtheRiseoftheBlockchainEconomy GeorgeGilder (4/5) Free EverybodyLies:BigData,NewData,andWhattheInternetCanTellUsAboutWhoWeReallyAre SethStephens-Davidowitz (4.5/5) Free FuturePresence:HowVirtualRealityIsChangingHumanConnection,Intimacy,andtheLimitsofOrdinaryLife PeterRubin (4/5) Free LiveWorkWorkWorkDie:AJourneyintotheSavageHeartofSiliconValley CoreyPein (4.5/5) Free Driven:TheRacetoCreatetheAutonomousCar AlexDavies (4.5/5) Free MadeinChina:APrisoner,anSOSLetter,andtheHiddenCostofAmerica'sCheapGoods AmeliaPang (4.5/5) Free HotSeat:WhatILearnedLeadingaGreatAmericanCompany JeffImmelt (5/5) Free LadiesGetPaid:TheUltimateGuidetoBreakingBarriers,OwningYourWorth,andTakingCommandofYourCareer ClaireWasserman (5/5) Free RelatedAudiobooks Freewitha30daytrialfromScribd Seeall DignityinaDigitalAge:MakingTechWorkforAllofUs RoKhanna (4/5) Free IfThen:HowtheSimulmaticsCorporationInventedtheFuture JillLepore (4.5/5) Free Liftoff:ElonMuskandtheDesperateEarlyDaysThatLaunchedSpaceX EricBerger (5/5) Free TheScienceofTimeTravel:TheSecretsBehindTimeMachines,TimeLoops,AlternateRealities,andMore! ElizabethHowell (3/5) Free TheQuietZone:UnravelingtheMysteryofaTownSuspendedinSilence StephenKurczy (4.5/5) Free TheWiresofWar:TechnologyandtheGlobalStruggleforPower JacobHelberg (4.5/5) Free SystemError:WhereBigTechWentWrongandHowWeCanReboot RobReich (4.5/5) Free AnUglyTruth:InsideFacebook’sBattleforDomination SheeraFrenkel (4.5/5) Free ABriefHistoryofMotion:FromtheWheel,totheCar,toWhatComesNext TomStandage (4.5/5) Free ThePlayersBall:AGenius,aConMan,andtheSecretHistoryoftheInternet'sRise DavidKushner (4.5/5) Free BitcoinBillionaires:ATrueStoryofGenius,Betrayal,andRedemption BenMezrich (4.5/5) Free DigitalRenaissance:WhatDataandEconomicsTellUsabouttheFutureofPopularCulture JoelWaldfogel (3.5/5) Free UserFriendly:HowtheHiddenRulesofDesignAreChangingtheWayWeLive,Work,andPlay CliffKuang (4.5/5) Free AWorldWithoutWork:Technology,Automation,andHowWeShouldRespond DanielSusskind (4.5/5) Free LeanOut:TheTruthAboutWomen,Power,andtheWorkplace MarissaOrr (4.5/5) Free Blockchain:TheNextEverything StephenPWilliams (4/5) Free 多媒體資料庫(New)3rd 1. 多媒體資料庫 2. 提綱
    • 簡介
    • 多媒體資料庫的挑戰
    • 多維度索引技術
    • 文件資料庫
    • 影像資料庫
    • 音訊資料庫
    • 視訊資料庫
    3. 簡介
    • 多媒體資料與傳統資料庫之比較
      • 資料內容
        • 傳統資料庫
          • 以文字的方式儲存,常以多個屬性描述一個實體或物件
        • 多媒體資料庫
          • 為涵義豐富的媒體,內容無法單純以多個屬性將其描述
      • 資料展示
        • 傳統資料庫
          • 文字,表單
        • 多媒體資料庫
          • 需要更豐富的視覺聽覺之展示
    4. 簡介
    • 範例
      • 將圖片以傳統資料庫的方式處理儲存
        • 可下達的查詢
          • 找出XXX所畫的圖片
          • 找出在1945~1955年,由OOO所繪製的圖片
        • 無法處理的查詢
          • 找出與此圖片相類似的圖片
          • 找出左上角有一台紅色車子的圖片
    5. 簡介
    • 多媒體資料庫必須能提供
      • 有效率之多媒體資料之儲存
      • 提供內涵式資料的查詢
        • 與媒體本身內容相關之查詢
      • 多樣性的多媒體資料之展示
    6. 多媒體資料庫的挑戰
    • 大量資料之處理
      • 多媒體資料所需之儲存空間比一般資料大得多
    • 多維資料之索引
      • 快速的搜尋技巧
    • 相似度之計算
      • 容錯式的查詢
    • 資料之展示
    7. 多維度索引技術
    • 如何將使用者查詢的結果快速正確的回傳,是很重要的問題
      • 資料量大,逐筆搜尋比對耗費過多的時間
      • 避免逐筆比對搜尋
        • 對資料建立索引加快查詢
        • 索引可視為一種分類的指標,依據索引的指示,即可找到與查詢相關的資料。

    8. 多維度索引技術
    • 在傳統資料庫中常見的索引結構
      • B+-tree
        • 最廣為使用的索引結構
      • Hash
        • Statichashing
        • Dynamichashing
      • Gridfile
      • Bitmapindex
    9. B+-Tree簡介
    • B+-Tree為一樹結構,且符合下列特性
      • 為一棵平衡樹,所有的葉節點到根節點的路徑長度皆相同
      • 對於所有的非根節點以及非葉節點,必須擁有n/2~n個子節點
      • 葉節點必須擁有(n-1)/2~n-1值
    10. B+-Tree節點結構
      • Ki為搜尋值
      • Pi為指向子節點的指標(fornonleafnodes)或為指向資料的指標(forleafnodes).
    • 節點內的搜尋值為排序過的K1
    11. 葉節點結構
    • 葉節點之特性
    • 對於i=1,2,...,n-1,i不是指向一個擁有搜尋值Ki的資料記錄就是指向一個存取單元((bucket),而這個存取單元只包含擁有搜尋值Ki的資料
    • Pn指向下一個葉節點
    12. 非葉節點結構
    • 在被Pi指到的搜尋樹內所有的搜尋值皆小於Ki-1
    • 在被Pi指到的搜尋樹內所有的搜尋值皆大於或等於Ki
    13. 範例 14. 討論
    • B+-tree對於傳統表單資料庫的搜尋十分有效率,且廣為被使用
    • 然而
      • B+-tree為單一維度的索引結構
      • 多媒體資料的特性
    15.
    • 多媒體資料的特徵
      • 文件
        • 內容
        • 關鍵字
      • 圖片
        • 主要構成顏色
        • 包含物件
        • 物件大小
        • 顏色分佈
        • 紋理特徵…
    16.
      • 音樂
        • 節拍
        • 和絃
        • 音調…
      • 影片
        • 物體之移動軌跡
        • 包含物件
        • 顏色…
    • 可以依內涵資訊為查詢條件
      • 找出與某張圖相像的圖
      • 找出包含類似某段旋律之歌曲
      • 找出有機車飛越火車的影片片段
    17.
    • 一個多媒體資料是由多個特徵所描述,可由多維資料表示
    • 然而B-tree,B+-tree
      • 僅能對單一維度的資料做索引
      • 不適用於多維度資料
    • 如何對多維度資料建立索引加速查詢,對多媒體資料的搜尋十分重要。

    18. 多維度上的索引結構
    • k-dtree
      • 用來儲存k–dimension的資料
      • 在一個層級(level)中只比一個維度的資料
      • 在節點N所在層級比較的維度上,在節點N所指到的左子樹內所有的資料其該維度的值皆比節點N該維度的值小,而右子樹的值則皆大於或等於節點N該維度的值
    19.
        • 範例
    21.
      • 隨堂練習
        • 考慮當k>2時的k-dtree
          • 自己試試看
          • 將A(30,24,58),B(46,78,33),C(20,33,15),D(58,40,50),E(40,88,56),F(38,54,44)插入k-dtree中
          • 請利用你所建立的k-dtree,找出與X(34,50,46)距離在15以內的點
        • 刪除時如何處理?
    22.
      • 優點
        • 簡單
      • 缺點
        • 樹的高度會因資料插入順序的不同而不同
        • 很可能造成一棵歪斜樹
          • 搜尋的效率將會變得十分差
        • 資料刪除的過程較為複雜
    23. 多維度上的索引結構
    • Mx-quadtree
      • 樹的形狀與插入的點的個樹以及順序無關。

      • 設計者必須決定一個k,而k一旦決定,則無法更改。

      • 整個地圖會被切成個格子
      • 刪除與插入的步驟十分簡單
    24.
        • 範例
          • 假設k=2
          • 地圖被切成個格子
          • 將A,B,C,D四個點放入MX-quad-tree中
    26. 多維度上的索引結構
    • R-tree
      • 為一棵平衡的樹
      • 針對大量資料的儲存十分有用
      • 可減少大量的磁碟存取
      • 一個R-tree的節點有k個指標
      • 除了根節點與葉節點外,每一個節點必須包含至k個非空的指標
        • 控制磁碟存取的次數
    27.
      • 葉節點包含真正的資料
      • 中間節點包含真正資料的群組輪廓,以長方形來表示
        • 左上角以及右下角
        • 可為多維度
      • 插入與刪除包括了節點的分裂以及整合,較為複雜。

    28.
      • 範例
        • 總共有八個物件
        • 兩維空間
        • 假設k=3
    29. 插入p14R1R2R3R4R5p6p7p5p1p2Pointerstodatatuplesp8p3p4p9p10p11p12p13R6R7R3R4R5R6R7p1p7p6p8p2p3p4p5p9p10p11p12p13R1R2p14 30. insertingp14R1R2R3R4R5p6p7p5p1p2Pointerstodatatuplesp8p3p4p9p10p11p12p13R6R7R3R4R5R6R7p1p7p6p8p2p3p4p5p9p10p11p12p13p14p14R1R2 31.
      • 刪除p2
    p14R1R2R1R2R3R4R5p6p7p5p1p2Pointerstodatatuplesp8p3p4p9p10p11p12p13R6R7R3R4R5R6R7p1p7p6p8p2p3p4p5p9p10p11p12p13p14 32.
        • 找出包含P2的MBR
    R1R2R1R2R3R4R5p6p7p5p1p2Pointerstodatatuplesp8p3p4p9p10p11p12p13R6R7R3R4R5R6R7p1p7p6p8p2p3p4p5p9p10p11p12p13p14p14 33.
      • R3不滿足R-tree的定義(underflow)
    R1R2R1R2R3R4R5p6p7p5p1Pointerstodatatuplesp8p3p4p9p10p11p12p13R6R7R3R4R5R6R7p1p7p6p8p3p4p5p9p10p11p12p13p14p14 34.
      • 與鄰近的Boundingrectangle合併
    R1R2R1R2R3R4R5p6p7p5p1Pointerstodatatuplesp8p3p4p9p10p11p12p13R6R7R3R4R5R6R7p1p7p6p8p3p4p5p9p10p11p12p13p14p14 35.
        • 將R3和R4重新整理,修改個別的左上角以及右上角之值
    R1R2R3R4R5p6p7p5p1Pointerstodatatuplesp8p3p4p9p10p11p12p13R6R7R3R4R5R6R7p1p7p6p8p3p4p5p9p10p11p12p13p14p14R1R2 36. 另一種簡單之整合單一維度索引之多維索引結構
    • 一個多媒體物件會包含的特徵為多維的
      • 假設一張圖片我們以平均的R(紅),G(綠),B(藍)當為特徵
      • 特徵空間為三維
      • 範例
    37.
    • 假設資料庫內有十張圖
    P1P3P2P5P4 38. P6P10P9P8P7 39.
    • 有下列三個查詢
    40.
    • 我們得到下列的R,G,B的平均值
    41.
    • Case1:假設我們要找到與查詢圖片Q1相似度在0.15內的圖片
      • Q1=(0.478,0.541,0.753),r=0.15
      • 資料庫內找出個個維度與查詢最近的值
        • (0.451,0.447,0.561)
        • (|0.478-0.451|,|0.541-0.447|,|0.753-0.561|)
        • =>(0.027,0.094,0.192)
        • 所以沒有符合查詢的資料
    >0.15 42.
    • Case2:假設我們要找到與查詢圖片Q2相似度在0.02內的圖片
      • Q2=(0.302,0.310,0.416),r=0.02
      • 第一步:在資料庫內找出個個維度與查詢最近的值
        • (0.318,0.302,0.400)
        • (|0.302-0.318|,|0.310-0.302|,|0.416-0.400|)
    皆小於0.02,故必須進行第二步驟 43.
      • 第二步驟:由第一個維度開始檢查,並將容許的錯誤減掉之前已用到的額度
        • 第一維可用的誤差額度為:0.02
        • 第二維可用的誤差額度為:(0.022-0.0162)1/2
        • 第三維可用的誤差額度為:(0.022-0.0162-0.0082)1/2
    大於已知之最小誤差0.016,所以資料庫內沒有符合查詢的資料存在 44.
    • Case3:假設我們要找到與查詢圖片Q3相似度在0.05內的圖片
      • Q3=(0.302,0.223,0.161),r=0.05
      • (|0.302-0.318|,|0.223-0.200|,|0.161-0.161|)
      • =>(0.016,0.023,0)G>R>B
      • 第一步驟無法決定資料庫內沒有欲查詢的資料
    45.
      • 搜尋G上的索引,找出在0.223+-0.05=[0.173,0.273]範圍內的圖
        • {P7,P6,P2}
      • 搜尋R上的索引,找出在0.302+-(0.044)=[0.258,0.346]範圍內的圖
        • {P2,P8}
      • 搜尋B上的索引,找出在0.161+-0.041=[0.120,0.202]範圍內的圖
        • {P2,P5,P9}
      • 將結果整合,得到P2為符合查詢之資料
    46. 演算法 52. 文件資料庫
    • 導論
      • 文件內容的分析
        • 同意字(Synonymy)
        • 一辭多義(Polysemy)
      • 搜尋結果之評估
        • Precision
          • 找到的文件正確的機率
        • Recall
          • 相關的文件被找到的機率
    53. 文件資料庫
        • Precision=
        • Recall=
    所有的文件相關的文件搜尋所得之結果 54. 文件資料庫
        • Precision/recall之計算範例
          • 請探討precision/recall之關係
    所有的文件相關的文件搜尋所得之結果5015020 55. 文件資料庫
    • 文件內容之描述
      • Stoplists
        • 文件內可被忽略的字,如:a,the,he…
      • Wordstems
        • 同一個字各種不同之時態或單複數等等
      • Frequencytables
    0010boat0220slip2000connection3001videotape3101drug0001sexd4d3d2d1Term/文件 56. 文件資料庫
    • 查詢處理
      • 文件相關性之計算
        • 字詞距離
        • Cosine距離
    57. 文件資料庫
      • 查詢型態
        • 找出包含某些字詞的文件
        • 找出包含某些字詞但不包含另一些字詞的文件
        • 找出離查詢向量最近的文件
        • 找出離查詢向量最近的前k個文件
        • 找出與查詢向量距離之內的文件
    58. 文件資料庫
      • 使用索引
        • R-tree
          • 不適用於高維索引結構
        • TV-tree
          • 與R-tree類似,但在一各節點,只考慮部分維度的關係
        • Invertedlist
        • Signaturefiles
    59. 文件資料庫
    • Invertedlist(反轉串列)
      • 以字詞為主所形成的反轉表
      • 以table為例
        • Sex:d1
        • Drug:d1,d3,d4
        • Videotape:d1,d4
      • 搜尋範例以及型態
        • and,or,not
        • 無法處理相似度查詢
      • 缺點
        • Size大
          • 壓縮技巧
    60. 文件資料庫
    • Signaturefiles
      • 每個關鍵字有它所對應的code
      • 對一文件而言,該文件的signature即為將其所包含的關鍵字的codesuperimpose在一起
      • 搜尋範例
      • 可處理之查詢型態
        • And,Or
        • Not?
    61. 文件資料庫
        • 討論
          • R-tree,TV-tree可處理相似度的查詢
          • Invertedindices,Signaturefiles無法處理相似度的查詢,只能處理包含某些字詞的查詢
          • Signaturefiles不適合處理不包含某個(些)字詞的查詢
            • 請舉例說明
          • R-tree不適合高維度的資料
    62. 影像資料庫
    • 查詢範例
      • 範例一:找出與這張圖相像的圖片
      • 範例二:找出左上角有一個紅色方形,而圖形的下方為藍色的所有圖片
    • 可代表一張影像的資訊
      • 與影像內涵資訊無關之資訊
        • 作者
        • 完成時間
        • 完成地點
        • etc..
    63.
      • 與影像內涵資訊相關的特徵
        • 顏色分佈
          • 可以colorhistogram表示
        • 紋理
        • 內含物件
          • 形狀
          • 顏色
          • 大小
          • 位置
        • 主要構成顏色
        • Etc.
    64. 影像資料庫搜尋
    • 由關鍵字查詢(QueryByKeyword)
      • 以文字屬性描述每張影像,可以對個個屬性建構索引,並可以SQL的方式下查詢
    • 以範例查詢(QueryByExample(QBE)):
      • 使用者對系統展示一張範例圖,系統則根據資料庫內每張圖與這張範例圖的相似度決定回傳的答案
      • 查詢型態
        • 找出離查詢範例最近的影像
        • 找出離查詢範例最近的前k個影像
        • 找出與查詢範例距離之內的影像
    65. 影像距離與相似度
    • ColorSimilarity
    • TextureSimilarity
    • ShapeSimilarity
    • Object&Relationshipsimilarity
    66. 顏色相似度(ColorSimilarity)
    • 顏色佔的比例
      • Ex:R:20%,G:50%,B:30%
    • 顏色分布圖(Colorhistogram)
    • Dhist(I,Q)=(h(I)-h(Q))TA(h(I)-h(Q))
      • Aisasimilaritymatrixcolorsthatareverysimilarshouldhavesimilarityvaluesclosetoone.
    67. 顏色配置
    • Colorlayoutmatching:compareseachgridsquareofthequerytothecorrespondinggridsquareofapotentialmatchingimageandcombinestheresultsintoasingleimagedistance
    • whereCI(g)representsthecoloringridsquaregofadatabaseimageIandCQ(g)representsthecolorinthecorrespondinggridsquaregofthequeryimageQ.somesuitablerepresentationsofcolorare
        • Mean
        • Meanandstandarddeviation
        • Multi-binhistogram
    68. 材質相似度(TextureSimilarity)
    • Pickandclick
      • SupposeT(I)isatexturedescriptionvectorwhichisavectorofnumbersthatsummarizesthetextureinagivenimageI(forexample:Lawstextureenergymeasures),thenthetexturedistancemeasureisdefinedby
    • Texturelayout
    69. 形狀相似度(ShapeSimilarity)
    • ShapeHistogram
    • BoundaryMatching
    • SketchMatching
    70.
    • 以內容來看,三張圖相像嗎?
      • 顏色資訊
      • 位置資訊
    實作範例Image-AImage-BImage-C 71. ColormodelRGBcolorspacev.s.HSVcolorspace 72.
    • 顏色與位置資訊的取得
      • 將圖切成一個一個的格子
      • 找出每個格子的代表色
      • 相鄰格子有相同的顏色,及組合成更大的格子
      • 最後的大區塊的顏色,位置及形狀是將來比對上所使用的重大資訊。

    74. 相似度比較
    • 兩張圖要相似有哪些因素是可能被使用者考慮的?
      • 顏色配置
      • 顏色分布
      • 物件位置
      • 物件大小
      • 物件形狀
    77. 範例SIZE=13+10+5=28QueryimageA13B10C5 78.
    • 聽看看下面幾首音樂或音樂片段,你知道歌名是什麼嗎?Music12345678910
    • 你是怎麼辦識出這首歌的呢?若要讓電腦幫我們做同樣的事,要怎麼設計呢?
    音樂資料庫 79. 音樂的特徵
    • StaticMusicInformation如調號、拍號等
    • AcousticalFeature如loudness、pitch等
    • ThematicFeature如melodies、rhythms及chords例“sol-sol-sol-mi”、”0.5-0.5-0.5-2”及“C-Am-Dm-G7”
    • StructuralFeature古典音樂格式的二個基本規則hierarchicalrule及repetitionrule
    80. 特徵的取樣
    • 相對音感vs絕對音感—旋律的位移
      • 考慮以絕對音感比對所會造成的問題
        • 升key,降key所發生的問題
      • 節拍取樣也有相同的問題
    • 依完整段落取pattern
    • 多音軌的取樣問題
    81. 特徵的編碼
    • 將特徵取出後,依適當的編碼方式將特徵標碼
      • 能應付音調的升降
      • 能應付節拍的快慢
      • 要讓聽起來像的音樂,其編碼出來的code之間的距離也要近
    82. 範例
    • 利用重複出現的重要音調代表某首歌
      • Hierarchicalrulemusicobject->movements->Sentences->phrases->figures
      • Repetitionrule如“C6-Ab5-Ab5-C6”及“F6-C6-C6-Eb6”
    83. 重複出現的式樣—定義
    • ForasubstringXofasequenceofnotesS,ifXappearsmorethanonceinS,wecallXarepeatingpatternofS.TherepeatingfrequencyoftherepeatingpatternX,denotedasfreq(X),isthenumberofappearancesofXinS.ThelengthoftherepeatingpatternX,denoted|X|,isthenumberofnotesinX.
    84. 重複出現的式樣—實例
    • “C-D-E-F-C-D-E-C-D-E-F”RP:RepeatingPatternRPF:RepeatingPatternFrequency
    23332RPFFEDCE-FRP33232RPFD-EC-DD-E-FC-D-EC-D-E-FRP 85. 重複出現的式樣
    • nontrival的定義ArepeatingpatternXisnontrivialifandonlyiftheredoesnotexistanotherrepeatingpatternYsuchthatfreq(X)=freq(Y)andXisasubstringofY.
    • 實例上頁的10個RP中,只有“C-D-E-F”及”C-D-E”為nontrival
    86. TheCorrelative-Matrix(1)
    • Phrase
    • MelodystringS=“C6-Ab5-Ab5-C6-C6-Ab5-Ab5-C6-Db5-c6-Bb5-C6”
    • RepeatingPatterns
    Ab514C616C6-Ab5-Ab5-C642RPPL(PatternLength)RPF 87. TheCorrelative-Matrix(2)ConstructionofcorrelativematrixT12,12--C6--Bb51--C6--Db511--C6--Ab51--Ab5111--C61141--C631--Ab5121--Ab511111--C6C6Bb5C6Db5C6Ab5Ab5C6C6Ab5Ab5C6 88. TheCorrelative-Matrix(3)
    • FindallRPsandtheirRFs.
      • 定義candidatesetCS其格式為(pattern,rep_count,sub_count)
      • CS一開始為空集合,接下來根據T來計算及insertRP到CS內
      • 因為條件有(Ti,j=1)or(Ti,j>1)及(T(i+1),(j+1)=0)or(T(i+1),(j+1)<>0),所以有以下四種情形
    89. TheCorrelative-Matrix(4)
      • Case1:(Ti,j=1)and(T(i+1),(j+1)=0)例T1,4=1,T2,5=0insert(“C6”,1,0)intoCS
      • Case2:(Ti,j=1)and(T(i+1),(j+1)<>0)例T1,5=1,T2,6=2modify(“C6”,1,0)into(“C6”,2,1)
      • Case3:(Ti,j>1)and(T(i+1),(j+1)<>0)例T2,6=2,T3,7=3insert(“C6-Ab5”,1,1),(“Ab5”,1,1)intoCS
      • Case4:(Ti,j>1)and(T(i+1),(j+1)=0)例T4,8=4,T5,9=0insert(C6-Ab5-Ab5-C6”,1,0),(“Ab5-Ab5-C6”,1,1)and(“Ab5-C6”,1,1)intoCSandchange(“C6”,6,1)into(“C6”,7,2)
    90. TheCorrelative-Matrix(5)
      • 計算RFrep_count=0.5f(f-1)即f=((1+SQRT(1+8*rep_count))/2例如本例中(“C6”,15,1),即C6的rep_count=15,所以f=((1+SQRT(1+8x15))/2=6同理“Ab5”的RF為4,“C6-Ab5-Ab5-C6”的RF為2
    91. TheString-JoinApproach(1)
    • Melodystring“C-D-E-F-C-D-E-C-D-E-F”
    • 第一步:找出所有長度為1的RPs,並記為{X,freq(X),(position1,position2,…)}如本例可找到{“C”,3,(1,5,8)},{“D”,3,(2,6,9)},{E”,3,(3,7,10)},and{“F”,2,(4,11)}
    92. TheString-JoinApproach(2)
    • 接下來長度為2的RPs可由上面的RPs經joining(記為“∞”)而得例如若要找“C-D”,已知{“C”,3,(1,5,8)},{“D”,3,(2,6,9)}則可確定“C-D”亦出現在(1,5,8),可表示為{“C”,3,(1,5,8)}∞{“D”,3,(2,6,9)}={“C-D”,3,(1,5,8)}
    93. TheString-JoinApproach(3)
    • 同理{“D”,3,(2,6,9)}∞{“E”,3,(3,7,10)}={“D-E”,3,(2,6,9)}{“E”,3,(3,7,10)}∞{“F”,2,(4,11)}={“E-F”,2,(3,10)}
    • 而長度為4的,可由長度為2的join而得如{“C-D”,3,(1,5,8)}∞{“E-F”,2,(3,10)}={“C-D-E-F”,2,(1,8)}
    94. TheString-JoinApproach(4)
    • 長度為3的,因為freq(“C-D-E-F”)=freq(“E-F”)=2,可知不只“E-F”是trivial,”D-E-F”也是(否則freq(“E-F”)要大於2)而{“C-D”,3,(1,5,8)}∞{“D-E”,3,(2,6,9)}={“C-D-E”,3,(1,5,8)}且freq(“C-D-E”)>freq(“C-D-E-F”)所以“C-D-E”為nontrivial
    • 最後,得知此例的nontrivialrepeatingpatterns為“C-D-E-F”及“C-D-E”
    95. 討論
    • 相對音感vs絕對音感—旋律的位移
    • 依完整段落取pattern
    • 不同音樂格式的轉換
    • 問題—重要卻沒重覆的feature
    96. 視訊資料庫
    • 內容組織
      • 使用者會對哪一部分的內容感興趣
      • 如何儲存這部分的內容,使得查詢處理能很有效率的被執行
      • 如何設計查詢語言,與傳統的SQL有何不同
      • 影片的內容可自動的被取出來嗎?
    97. 影片內涵資訊
    • 物件
      • 單純形狀的描述
        • 可做到自動化
      • 有意義的物件描述
        • 人物
          • 男主角,女主角…
        • 動物
          • 豬,貓,狗…
        • 非生物
          • 皮箱,鑰匙…
        • 幾乎不可能做到自動化
    98.
    • 活動
      • 單純描述
        • 物件移動軌跡
          • 如何將軌跡編碼成電腦可比對的code為一個很重要的課題
        • 可做到自動化
      • 含有意義的行為描述
        • 車禍,甲男把皮箱交給乙女…
        • 必須用單純描述做為基礎描述
        • 不容易做到完全自動化
    99. 視訊內涵資訊之建構
    • 兩種資訊
      • 靜態
        • 將一個frame視為一張圖片
        • 利用圖片搜尋技巧
      • 動態
        • 將連續frame視為一個動作
        • 物件移動軌跡必須被考慮
    100.
    • 靜態資訊
    101.
    • 動態資訊
    102. Preface(Cont’d)
    • 移動軌跡
    103.
    • 影片分析
      • Shot
        • 單一連續的鏡頭所拍攝之影片段落
        • 組成影片的單位
        • 同一個shot內的frame內容類似
          • 可以在一個shot中找出其代表的frame,來表示整個shot
        • Shot偵測
          • 利用顏色分佈的改變偵測shot的界線(boundary)
            • 可自動化,但可能會因顏色的突然改變而誤找
          • 目前shotsegmentation工具可以達到一各十分高的正確率(>95%)
    104.
      • 場景(SCENE)
        • 由多個描述相同事件的shot所組成
        • 可當作查詢的單位
      • 物件移動軌跡
        • 找出物體移動的軌跡,可代表某一事件
    105. 涵義概念式查詢
    • 可下達語意式的查詢
      • 找出包含天空以及海的圖片
      • 找出有飛機飛過天空的影片
    • 以低階(lowlevel)特徵值的關聯,找出媒體之內涵意義
      • 半自動分類
      • Classification
      • Associationpatternmining
    • Concept與Semanticnetwork
    106. Classification
    • 目標
      • 預測資料之類別
    • 步驟
      • 建立資料分類模型
        • 根據訓練資料集(trainingset)
      • 評估資料分類模型的準確度
        • 根據測試資料集(testingdata)
      • 資料分類預測
    107. TrainingDataClassificationAlgorithmsIFrank=‘professor’ORyears>6THENtenured=‘yes’Classifier(Model) 108. ClassifierTestingDataUnseenData(Jeff,Professor,4)Tenured? 109. Classification
    • 演算法
      • 決策樹(decisiontree)
      • BayesianBeliefNetworks
      • k-nearestneighborclassifier
      • case-basedreasoning
      • Geneticalgorithm
      • Roughsetapproach
      • Fuzzysetapproaches
      • NeuralNetwork
    110. 訓練資料集(trainingdataset) 111. 決策樹age?overcaststudent?creditrating?noyesfairexcellent<=30>40nonoyesyesyes30..40 112. NaïvebayesianNetwork:exampleP(n)=5/14P(p)=9/14 113. P(true|n)=3/5P(true|p)=3/9P(false|n)=2/5P(false|p)=6/9P(high|n)=4/5P(high|p)=3/9P(normal|n)=2/5P(normal|p)=6/9P(hot|n)=2/5P(hot|p)=2/9P(mild|n)=2/5P(mild|p)=4/9P(cool|n)=1/5P(cool|p)=3/9P(rain|n)=2/5P(rain|p)=3/9P(overcast|n)=0P(overcast|p)=4/9P(sunny|n)=3/5P(sunny|p)=2/9windyhumiditytemperatureoutlook 114. Play-tennisexample:classifyingX
    • AnunseensampleX=
    • P(X|p)·P(p)=P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p)=3/9·2/9·3/9·6/9·9/14=0.010582
    • P(X|n)·P(n)=P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n)=2/5·2/5·4/5·2/5·5/14=0.018286
    • SampleXisclassifiedinclassn
    115. BayesianBeliefNetworksFamilyHistoryLungCancerPositiveXRaySmokerEmphysemaDyspneaLC~LC(FH,S)(FH,~S)(~FH,S)(~FH,~S)0.80.20.50.50.70.30.10.9BayesianBeliefNetworksTheconditionalprobabilitytableforthevariableLungCancer 116. BayesianBeliefNetworks 117. Thek-NearestNeighborAlgorithm._+_xq+__+__+..... 118. RoughSetApproach
    • Roughsetsareusedtoapproximatelyor“roughly”defineequivalentclasses
    • AroughsetforagivenclassCisapproximatedbytwosets:a
      • lowerapproximation(certaintobeinC)
      • upperapproximation(cannotbedescribedasnotbelongingtoC)
    119. Fuzzysetapproach 120. Associationpatternmining
    • 目標
      • 尋找項目(item)或物件間的關聯性
      • 關聯性
        • 一起出現的次數要夠多(support)
        • 伴隨出現之條件機率值要夠大(confidence)
    • 演算法
      • Apriorialgorithm
      • Latticeapproach
      • FP-tree
    121. 探勘關聯式法則:範例
    • ForruleAC:
      • support=support({AC})=50%
      • confidence=support({AC})/support({A})=66.6%
    • TheAprioriprinciple:
      • Anysubsetofafrequentitemsetmustbefrequent
    Min.support50%Min.confidence50% 122. Apriori演算法
    • JoinStep:CkisgeneratedbyjoiningLk-1withitself
    • PruneStep:Any(k-1)-itemsetthatisnotfrequentcannotbeasubsetofafrequentk-itemset
    • Pseudo-code:
        • Ck:Candidateitemsetofsizek
        • Lk:frequentitemsetofsizek
        • L1={frequentitems};
        • for(k=1;Lk!=;k++)dobegin
        • Ck+1=candidatesgeneratedfromLk;
        • foreachtransactiontindatabasedo
          • incrementthecountofallcandidatesinCk+1thatarecontainedint
        • Lk+1=candidatesinCk+1withmin_support
        • end
        • returnkLk;
    123. 範例DatabaseDScanDC1L1L2C2C2ScanDC3L3ScanD 124. FP-tree演算法
    • 把一大型資料庫壓縮至一緊實的資料結構
      • FP-tree
        • 只包含探勘關聯式樣式所需之相關資料
        • 避免花費高昂的資料庫掃描
    125. FP-tree建置過程min_support=0.5TIDItemsbought(ordered)frequentitems100{f,a,c,d,g,i,m,p}{f,c,a,m,p}200{a,b,c,f,l,m,o}{f,c,a,b,m}300{b,f,h,j,o}{f,b}400{b,c,k,s,p}{c,b,p}500{a,f,c,e,l,p,m,n}{f,c,a,m,p}
    • Steps:
    • ScanDBonce,findfrequent1-itemset(singleitempattern)
    • Orderfrequentitemsinfrequencydescendingorder
    • ScanDBagain,constructFP-tree
    126. {}f:4c:1b:1p:1b:1c:3a:3b:1m:2p:2m:1HeaderTableItemfrequencyheadf4c4a3b3m3p3 127. FP-tree主要探勘過程
    • 對FP-tree內的每個node,建置conditionalpatternbase
    • 對每一個conditionalpattern-base建置conditionalFP-tree
    • 重複上面步驟,一直到
      • FP-tree只剩下單一路徑
    128. Step1:對FP-tree內的每個node,建置conditionalpatternbaseConditionalpatternbasesitemcond.patternbasecf:3afc:3bfca:1,f:1,c:1mfca:2,fcab:1pfcam:2,cb:1{}f:4c:1b:1p:1b:1c:3a:3b:1m:2p:2m:1HeaderTableItemfrequencyheadf4c4a3b3m3p3 129. Step2:對每一個conditionalpattern-base建置conditionalFP-treeAllfrequentpatternsconcerningmm,fm,cm,am,fcm,fam,cam,fcam
    • m-conditionalpatternbase:
      • fca:2,fcab:1
    {}f:3c:3a:3m-conditionalFP-tree{}f:4c:1b:1p:1b:1c:3a:3b:1m:2p:2m:1HeaderTableItemfrequencyheadf4c4a3b3m3p3 130. MiningFrequentPatternsbyCreatingConditionalPattern-BasesEmptyEmptyf{(f:3)}|c{(f:3)}c{(f:3,c:3)}|a{(fc:3)}aEmpty{(fca:1),(f:1),(c:1)}b{(f:3,c:3,a:3)}|m{(fca:2),(fcab:1)}m{(c:3)}|p{(fcam:2),(cb:1)}pConditionalFP-treeConditionalpattern-baseItem 131. Step3:RecursivelyminetheconditionalFP-treeCond.patternbaseof“am”:(fc:3)Cond.patternbaseof“cm”:(f:3){}f:3cm-conditionalFP-treeCond.patternbaseof“cam”:(f:3){}f:3cam-conditionalFP-tree{}f:3c:3a:3m-conditionalFP-tree{}f:3c:3am-conditionalFP-tree 132. 效能分析DatasetT25I20D10K 133. Associationpatternmining
    • 傳統Associationpatternmining幾乎都是找出項目和項目間的關聯性
    • 在多媒體應用中
      • 互斥之關係亦十分重要
    • 可幫助分類的準確性
    134. Concepts與Semanticnetwork
    • 概念(concepts)
      • 知識表達之基本觀念
      • Semanticnotionsoftheobjectsintheworld
    135. Concepts與Semanticnetwork
      • 概念之間的關係
        • 多重解析度(multi-resolution)
    136. Concepts與Semanticnetwork
    • Semanticnetwork
      • 節點
        • 物件,觀念或狀態
      • 連結
        • 節點之間的關聯
    138.
    • 參考資料
      • V.S.Subrahmanian,PrinciplesofMultimediaDatabaseSystems,MorganKaufmann.
      • C.Y.Tsai,A.L.P.ChenandK.Essig,”EfficientImageRetrievalApproachesforDifferentSimilarityRequirements”,Proc.SPIEConferenceonStorageandRetrievalforImageandVideoDatabases,2000
      • JiaweiHanandMichelineKamber,DataMining:ConceptsandTechniques,MorganKaufmann,2000.
    139. Content-BasedInteractivity 141. Paperstudy:topic1ASemanticModelingApproachforVideoRetrievalbyContentEdoardoArdizzoneMohand-SaidHacidICMCS1999July 142. Introduction
    • Usingkeywordsorfreetexttodescribethenecessarysemanticobjectsisnotsufficient.
    • Theissuesthatneedtobeaddressedis
    • therepresentationofvideoinformation
    • theorganizationofthisinformation
    • user-friendlyrepresentation
    143. Introduction(cont.)
    • Weexploitthe2languages
    • Onefordefiningtheschema(i.e.the
    • structure)
    • Theotherforqueryingthroughschema
    • And2layersforrepresentingvideo`sconceptualcontent
    • Objectlayer
    • Schemalayer
    144. 2Layersforvideo`sconceptualcontent
    • Objectlayer:collectobjectsofinterest,theirdescriptionandrelationamongthem.Objectsinvideosequencearerepresentedasvisualentities.
    • Schemalayer:intendtocapturethestructureandknowledgeforvideoretrieval.Visualentitiescanbeclassifiedintohierarchicalstructure.
    145. SchemaLanguage—example1 146. QueryLanguage(QL)
    • QueryingaDBmeansretrievingstoredobjectsthatsatisfycertainconditionsorqualificationsandhenceareinterestingforauser.
    • InOODB,classesareusedtorepresentsetsofobjects.
    147. QLcont.
    • Queriesarerepresentedasconceptsinourabstractlanguage.
    • Thesyntaxandsemanticsofaconceptlanguageformakingqueries
    148. QL-Example
    • “SequencesofmoviesdirectedbyKevinCostnerinwhichheisalsoanactor”
    149. QL-Example
    • “thesetofmovieswhosedirectorsarealsoproducersofsomefilms”
    150. SemanticAnnotationofSportsVideo
    • Videosisn`tjustasequenceofimages.Itaddthetemporaldimension.
    • Anapproachforsemanticannotationofsportsvideosthatincludeseveraldifferentsportsandevennon-sportscontent
    151. Introduction--Typicalsequenceofshotsinsportsvideo 153. Classifyingvisualshotfeatures 154. Implementation--Classifyingvisualshotfeatures(cont.) 155. Conclusion
    • Thereisagrowinginterestinvideodatabaseandfordealingwithaccessproblems.
    • Oneofthecentralproblemsinthecreationofrobustandscalablesystemsformanipulatingvideoinformationliesinrepresentingvideocontent
    156. Conclusioncont.
    • Thisframeworkisappropriateforsupportingconceptualandintensionalqueries
    • Beabletoperformexactaswellaspartialorfuzzymatching
    • somephysicalfeatures:color,objects’sshape…ect.
    157. Paperstudy:topic2IndexingmethodsforapproximatestringmatchingIEEEdataengineeringbulletin,2000GonzaloNavarro,RicardoBaeza-Yates,ErkkiSutinen,JormaTarhio 158. outline
    • Introduction
    • Basicconcepts
    • Neighborhoodgeneration
    • Partitioningintoexactsearch
    • Intermediatepartitioning
    • summarization
    159. Introduction
    • Definition
      • givenalongtextT1…..noflengthnandacomparativelyshortpatternP1…..moflengthm,bothsequencesoveranalphabetΣofsizeσ,findthetextpositionsthatmatchthepatternwithatmostk“errors”.
    • Applications
      • Retrievingmusicalpassagessimilartoasample
      • FindingDNAsubsequencesafterpossiblemutations
      • Searchingtextunderthepresenceoftypingorspellingerrors
    160. outline
    • Introduction
    • Basicconcepts
    • Neighborhoodgeneration
    • Partitioningintoexactsearch
    • Intermediatepartitioning
    • summarization
    161. Suffixtrees1gaaccgacct2aaccgacct3accgacct4ccgacct5cgacct6gacct7acct8cct9ct10tWeakpoint:largespacerequirement,about9timesoftextsize. 162. SuffixarrayRequirelessspace,about4timesoftextsizea$aaaabbcdrabbcdrraarraa$caac$$c 163. Q-grams,Q-samplesTEXT123456789101112345INDEXabrabracracaacadcada182345Q-samples,unlikeq-grams,donotoverlap,andmayevenbesomespacebetweeneachpairofsamples.abracadabra 164. Editdistanceed(“SURVEY”,”SURGERY”)Finalresult22233456Y32122345E43211234V43210123R54321012U65432101S76543210YREGRUS 165. outline
    • Introduction
    • Basicconcepts
    • Neighborhoodgeneration
    • Partitioningintoexactsearch
    • Intermediatepartitioning
    • summarization
    166. NeighborhoodgenerationPattern:abcwith1error{*bc,a*c,ab*}U{ab,ac,bc}U{*abc,a*bc,abc*}Textabracadabra{abr},{ac},{abr},..resultsK-NeignborhoodK-neighborhood(candidate)couldbequitelarge,So,thisapproachworkswellforsmallmandk.searching 167. outline
    • Introduction
    • Basicconcepts
    • Neighborhoodgeneration
    • Partitioningintoexactsearch
    • Intermediatepartitioning
    • summarization
    168. PartitioningintoexactsearchPattern:abrwith1error{a},{br}Textabracadabra{abra},{abra}..resultsPartitionpattern1.Forlargeerrorlevelthetextareastoverifycoveralmostalmostallthetext.2.Ifsgrow,piecesgetshorter,morematchtocheck,butmakethefilterstricter.ExactsearchverificationTextabracadabrainto(K+s)piecesfiltration 169. outline
    • Introduction
    • Basicconcepts
    • Neighborhoodgeneration
    • Partitioningintoexactsearch
    • Intermediatepartitioning
    • summarization
    170. IntermediatePartitioningPattern:abrwith1error{a},{br}Textabracadabra{abra},{abra}..resultsPartitionpatternNeighborhoodgenerationallowfloorofk/jverificationTextabracadabraintoj(j=2)piecesJ=2(j=K+1;partitioningintoexactsearch)searching 171. IntermediatePartitioningPattern:abrwith1error{abr}Textabracadabra{abra},{abra}..resultsPartitionpattern1.Whichjvaluetouse?thesearchtimedecreaseswhenjmovefrom1tok+1.buttheverificationcostgrows,oppositiely.Neighborhoodgenerationallowfloorofk/jintoj(j=1)piecesJ=1(neighborhoodgeneration)searching{*abr,a*br,ab*r,abr*}U{ab,br,ar}U{ab*,*br,a*r} 172. outline
    • Introduction
    • Basicconcepts
    • Neighborhoodgeneration
    • Partitioningintoexactsearch
    • Intermediatepartitioning
    • summarization
    173. summarization 174. Paperstudy:topic3LazyUsersandautomaticVideoRetrievalToolsin(the)LowlandsTheLowlandsTeamCWI1,TNO2,UniversityofAmsterdam3,UniversityofTwente4TheNetherlandsJanBaan2,AlexvanBallegooij1,JanMarkGeusenbroek3,JurgendenHartog2,DjoerdHiemstra4,JohanList1,ThijsWesterveld4,IoannisPatras3,StephanRaaijmakers2,CeesSnoek3,LeonTodoran3,JeroenVendrig3,ArjenP.deVries1andMarcelWorring3.Proceedingofthe10thTextRetrievalConference(TREC),2001 175. Outline
    • Introduction
    • Detector-baseprocessing
    • Probabilisticmultimediaretrieval
    • Interactiveexperiment
    • Lazyusers
    • Discussion
    • Conclusion
    176. BasickeysubjectofMultimediadatabase
    • Indexing
      • K-dtree,pointquadtree,MX-quadtree,R-tree,suffix-tree,TV-tree……
      • Determinedbydatabasedesigner.
    • Similarity
      • Nostandard.
      • Howsimilarisdecidebyuser.
    177. UserisalwaysLazy!
    • Facts1:
      • Almostofenduserknownothingabout“Query”.
    • Facts2:
      • Whattheywantmayonlyaconcept,cannotclearlytodescript.
    • Facts3:
      • Userslikeselection,notquestion.
    178. Introduction
    • Usetwocomplementaryautomaticapproach:
      • Visualcontent
      • Transcript
    • Theexperimentfocusonrevealingrelationshipsbetween:
      • Differentmodalities
      • Theamountofhumanprocessing
      • Thequalityofrersults
    179. IntroductionCombined1-4,interactive,byalazyuser5Queryarticulation,interactive4Transcript-base,automatic3Combined1-3,automatic2Detector-base,automatic1DescriptionRun 180. Detector-baseprocessing
    • Architectureforautomaticsyste
    181. Detector-baseprocessing(cont)
    • Detectorforexactqueriesthatyieldyes/noanswerdependingifasetofpredicatesissatisfied.
    • Detectorforapproximatequeriesthatyieldameasurethatexpresseshowsimilaris.
    182. Detector-baseprocessing(cont)SelecteddetectorAnalysisofthetopicdescriptionQuerybyexampleFilter-outirrelevantmaterialFinalrankedresults 183. Detectors
    • Cameratechniquedetection
      • zoom,pan,tilt…….
    • Facedetector
      • noface,1-face,2-faces…5-faces,many-faces
    • Captionretrieval
      • Textsegmentation,OCR,fuzzystringmatching
    • Monologuedetection
      • Shotshouldcontainspeech
      • Shotshouldhaveastaticorunknowncameratechnique
      • Shotshouldhaveaminimumlength
    • Detectorsbaseoncolorinvariantfeatures
      • Keyframesstorewithcolorhistogram
    184. Probabilisticmultimediaretrieval
    • Weassumeourdocumentsareshotsfromvideo.
    • Modelsofdiscretesignals(i.e.text).
      • Mixtureofdiscreteprobabilitymeasures
    • Modelsofcontinuoussignals(i.e.image).
      • Mixtureofcontinuousprobabilitymeasures
    185.
    • UsingBayes’rule:
    • Ifaqueryconsistsofseveralindependentparts(e.g.atextualQtandvisualpartQv)
    Probabilisticmultimediaretrieval 186. Probabilisticmultimediaretrieval
    • Hierarchicaldatamodelofvideo
    videoshotsscenesscenesshotsframesframes 187. Probabilisticmultimediaretrieval
    • Textretrieval
      • UsingSphinx3speechrecognitionsystemfromCarnegieMellonUniversity
      • Inputquerykeyword
      • Retrievaltoshotslevel
    188. Probabilisticmultimediaretrieval
    • Imageretrieval
      • Retrievingthekeyframesofshots
      • Cutkeyframesofeachshotsintoblocksof8x8pixels
      • PerformbyDiscreteCosineTransform(DCT),whichusedintheJPEGcompressionstandard.
    189. Interactiveexperiments
    • Topiclists.
      • http://www-nlpir.nist.gov/projects/t01v/topicsoverview.html
    • Topic33:Whitefort
    • Topic19:Lunarrover
    • Topic8:Jupiter
    • Topic25:Starwar
    190. Topic33:WhitefortUsingRun1:Anycolor-basedtechniqueworkedoutwellforthisqueryExampleknown-itemkeyframe 191. Topic19:LunarroverColor-histogramExampleKnown-itemkeyframe
    • Color-basedretrievaltechniqueisnotusefulinthiscase
    • ByRun4:
    • Allowusertomakingexplicittheirownworldknowledge:inscenesonthemoon,theskyisblack.
    192. Topic8:JupiterExampleSomecorrectanswerskeyframes
    • Atfirstthough,thisquerymayseemtobeeasytosolve.
    • Butitisapparentthatcolorsindifferentphotos.
    • Usingthreecolor-histogramandtheirinterrelationships.
    Color-sets 193. Topic25:StarwarExampleSomecorrectanswerskeyframes
    • Textretrieval:(ifyouknowthename)
    • Thefirstfilterselectsonlythoseimagesthathavesufficientamountofgoldencontent.
    • Secondly,asetoffiltersreducesthedata-setbyselectingthoseimagesthatcontainthecolor-setsshown.
    R2D2,C3PO 194. Lazyusers
    • Lazyusersidentifyresultsetsinsteadofcorrectanswer.(soourinteractiveresultsarenot100%precision.)
    • Thecombinationstrategiesusedtoconstructrun5consistedof:
    ChoosetherunthatlooksbestConcatenateorinterleavetop-NfromvariousrunsContinuewithanautomatic,seededsearchstrategy 195. Discussion
    • Howvideoretrievalsystemsshouldbeevaluated.
    • Theinhomogeneityofthetopics
      • “sailboatonthebeach”vs.“yachtonthesea”
    • Thelowqualityofthedata
      • photosofJupiter
    • Theevaluationmeasuresused
    196. Conclusion
    • Ourevaluationdemonstratestheimportanceofcombiningvarioustechniquestoanalyzethemultiplemodalities.
    • theoptimaltechniquedependsalwaysonthequery.
    • Userinteractionisstillrequiredtodecideuponagoodstrategy.
    197. Paperstudy:topic4VIDEOINDEXINGBYMOTIONACTIVITYMAPSWeiZeng;WenGao;DebinZhao;ImageProcessing.2002.Proceedings.2002InternationalConferenceon,Volume:1,2002Page(s):912-915 198. Outline
    • Introduction
      • motionindexing
    • MotionActivityMap---MAM
    • DefinitionofMAM
    • GenerationofMAM
    • OrganizationofMAMs
    • Experimentalresults
    • Conclusion
    199. Introduction
    • Tofindavideoindexingtechniquewhichcouldextractcrucialinformationfromvideosforefficientvisualcontent-basedqueries.
    • Inordertofosterthecontent-basedindexingandretrieval.
    • Thevideoindexingshouldbebasedongoodfeaturerepresentationsuchasmotionfeature.
    • Motionfeaturedepictsthedynamiccontentsofvideo,andenrichthesemanticsofvideos,suchasrunningandflying.
    200. Motionindexing
    • Thosetechniquesandsystemsaboutmotionindexingcanbecategorizedintofourtypes.
      • Feature-basedapproach:
      • Trajectory-basedapproach:
      • Semantic-basedapproach
      • Image-basedapproach
    201. Feature-basedapproach:
    • Computesthemotionparametersofpredefinedmotionmodel.
    • HasbeenadoptedbyMPEG7(stilldraft)
    • example
    203. Trajectory-basedapproach:
    • Thisapproachisoftenchosenbyobject-basedsystemforindexingvideo.
    205. Semantic-basedapproach
    • Providessemanticeventsoractionsofmotion.
    • Referencepaper“ASemanticEvent-DetectionApproachandItsApplicationtoDetectingHuntsinWildlifeVideo”
    207. Image-basedapproach
    • Givessynthesizedpicturesgeneratedfrommotionofvideo.
    • MAMistheimage-basedapproach
    208. ConceptsofMAM(1)
    • Motionactivitymapisanimagethataccumulatesthemotionactivityonthespecificgridsalongthetemporalaxisofvideos.
    gridtij 209. ConceptsofMAM(2)
    • Itisanimage-basedrepresentationaboutthemagnitudeandspatialdistributionofmotion.
    • OnevideocliquecangenerateseveralMAMsandallMAMsareorganizedintoahierarchicaltreeviewaccordingtothestructureofvideo.
    210. DefinitionofMAM(1)
    • Motionactivitymapisanimagesynthesizedfrommotionvectorfield,andmotionvectorfieldcanbedefinedasfollowingtemporalfunction.X(t),wheret=t0,t1,………tk.
      • X(t)=v(i,j,t)
    (i,j)Wherevx=(i,j,t)andvy=(i,j,t)arethex-axiscomponentandy-axiscomponentofmotionvectoronthegrid(i,j). 211. DefinitionofMAM(2)
    • BaseonthemotionvectorfieldX(t),themotionactivitymap(MAM)iscomputedas
    (i,j)Wheref(v(i,j,t))isthemotionactivitymeasurefunctionongrid(i,j)andisthegridsetofvideo. 212. GenerationofMAMDemovideosegmentationHallshallMotionvectorfieldVideoVideoVideoTemporalvideoSegmentationMAMComputingMAMQuantizationMAMspatialSegmentationMAMRegion-BasedMAMs 213. OrganizationofMAMs
    • Videocanbesegmentedintodifferentshotlevelssuchasshotsandsub-shots,sotherearealotofMAMscorrespondingtoavideoshot.
    • AlltheMAMsofvideocanbeorganizedintoahierarchicaltreerepresentingthestructureofvideo.
    214. OrganizationofMAMsInteractiveVideoRetrievalVideoVideoVideoTemporalSegmentationMAMComputingLayeredspatialsegmentationMAMdisplayMAMDatabase 215. Expermentalresults(a)KeyframebasedMAM(b)MAM(c-f)Region-representationofMAM 216. Conclusion
    • VideoshotMAMsub-shot1MAM1sub-shot2MAM2
    • AlltheMAMcouldbesegmentedintoRegion-representation.
    • OptimalizeMAM-basedrepresentation,wemarkthepixelofMAMwithaspecificcoloraccordingtotherelatedintensity.
    217. Paperstudy:topic5SOM-BaseR*-TreeforSimilarityRetrievalDatabaseSystemsforAdvancedApplications,2001.Proceedings.SeventhInternationalConferenceon,2001Kun-seok.Oh,YaokaiFeng,KunihikoKaneko,AkifumiMakinouchi,Sang-hyunBae 218. Outline
    • Self-OrganizingMaps(SOM)
    • R*-Tree
    • SOM-BasedR*-Tree
    • Experiments
    • Conclusion
    219. Self-OrganizingMaps(SOM)WhatisSOM1.SOMprovidemappingfromhigh-demensionalfeaturevectorsontoatwo-dismensionalspace2.Themappingpreservesthetopologyofthefeaturevector.3.Themapiscalledtotopologicalfeaturemap,andpreservesthemutualrelationships(similarity)infeaturespaceofinputdata.4.Thevectorscontainedineachnodeofthetopologicalfeaturemapareusuallycalledcodebookvectors. 220.
    • 我們使用100個類神經元排列成10×10的二維矩陣來進行電腦模擬,用來進行測試的輸入向量的維度也是二維的資料,且其機率分佈為均勻地分佈在。

    Self-OrganizingMaps(SOM) 221. 圖:均勻分佈之資料的自我組織特徵映射圖:(a)隨機設定之初始鍵結值向量;(b)經過50次疊代後之鍵結值向量;(c)經過1,000次疊代後之鍵結值向量;(d)經過10,000次疊代後之鍵結值向量;Self-OrganizingMaps(SOM) 222.
    • 類神經元在特徵映射圖中的機率分佈,的確可以反應出輸入向量的機率分佈。

      這裏要強調一點的是,資料的機率分佈特性並非是線性地反應於映射圖中。

    三群高斯分佈之資料。

    Self-OrganizingMaps(SOM) 223. Self-OrganizingMaps(SOM)SOMAlgorithm1.InitMapneuron.2.inputfeaturevectorx.3.findwinnerneuron(BMN:Beat-MatchNode)4.adjustingallneuron’sweight5.continusstep2,untilnoadjusting. 224. R*-Tree
    • TheR*-treeimprovestheperformanceoftheR-treebymodifyingtheinsertionandsplitalgorithmsbyintroducingtheforcedreinsertionsmechanism
    • TheR*-treeisproposedasanindexstructureforspatialdatasuchasgeographicalandCADdata
    225. R*-Tree
    • Eachinternalnodecontaisanarrayof(p,)entries.Wherepisapointertoinchildnodeofthisinternalnode,andistheminimumboundingrectangle(MBR)ofherchildnodepointertobythepointerp.
    • Eachleadnodecontainsanarrayof(OID,)forspatialobjects,whereOIDisanobjectidentifer,andistheMBRoftheobjectidentifiedbyOID.
    226. R*-Tree(cont.)Spaceofpointdata 227. R*-Tree(cont.)Treeaccessstructure 228. SOM-BasedR*-Tree
    • 1、Clusteringsimilarimages
      • WefirstgeneratethetopologicalfeaturemapusingtheSOM,WegeneratetheBMILbycomputingthedistancebetweenthefeaturevectorandcodebookvectorsfromthetopologicalfeaturemap.
      • TheBMN(best-match-nodes:nodewithminimumdistance)ischosenfromthemapnodes.
      • Nexttheweigthvectorareupdated
    229. SOM-BasedR*-Tree(cont.) 230. SOM-BasedR*-Tree(cont.)
    • 2、Construction
      • InordertoconstructtheR*-tree,weselectaCBV(codebookvector)fromthetopologicalfeaturemapasanentry.
      • Ifitisanemptynode.Weselectthenextcodebookvector.Otherwisedeterminetheleafnodewhichinsertcodebookvector.
      • AleafoftheSOM-basedR*-treehasthefollowingstructure:
    231. Experiments
    • WepreformedexperimentstocomparetheSom-basewithSOMandR*-tree.
    • Imagedatabaseuse:40,000atrificial/natural(storageonlocaldisk)
    • Imagesize:128*128pixels
    • Performedon:COMPAQdeskpro(OS:FreeBSD)with128MBRAM
    232. Experiments(cont.)
    • FeatureExtraction:
      • useHaarwaveletestocomputefeaturevector
      • ThecolorspaceYIQ-space(NTSCtransmissionprimaries)
      • Eachelecmentofthisfeaturevectorrepresentsanagerageof32*32pixelsoforiginalimage.
      • Thecolorfeaturevectorhas48dimensions(4*4*3;where3istheehreechannelsofYIQ-space)
    233. Experiments(cont.)
    • ConstrucionofSOM-basedR*-tree
    234. Experiments(cont.) 235. Experiments(cont.)
    • Weexperimentedwithfourtypeofsearches:
    • (I)normalSOMincludingemptynodes
    • (II)normalSOMwitheliminatedemptynodes
    • (III)normalR*-tree
    • (IV)SOM-basedR*-treewitheliminatedemptynodes
    236. Experiments(cont.)
    • RetrievalfromSOMwithemptynodes
    • RetrievalfromSOMwithoutemptynodes
    237. Experiments(cont.) 238. Conclusion
    • Forhigh-dimensionaldata,weusingatopologicalfeaturemapandabest-matching-image-list(BMIL)obtainedviathelearningofaSOM
    • Inanexperiment,weperformedasimilaritysearchusingrealimagedataandcomparedtheperformanceoftheSOM-basedR*-treewithanormalSOMandR*-tree,baseonretrievaltimecost
    Editor'sNotes 這一章節主要探討收集回來後的多媒體資料,要如何儲存,處理以及搜尋的相關技術 4likes × AmyBrown Dec.27,2021 Didyoutry⇒www.HelpWriting.net⇐?.Theyknowhowtodoanamazingessay,researchpapersordissertations. ZaherNourredine Dec.16,2018 RebeccaHuang Dec.30,2009 JonBoutelle Dec.14,2008 DirectorofTechnology at Slideshare/Linkedin Views × Totalviews 3,898 OnSlideShare 0 FromEmbeds 0 NumberofEmbeds 17 Youhavenowunlockedunlimitedaccessto20M+documents! × UnlimitedReading Learnfasterandsmarterfromtopexperts UnlimitedDownloading Downloadtotakeyourlearningsofflineandonthego YoualsogetfreeaccesstoScribd! Instantaccesstomillionsofebooks,audiobooks,magazines,podcastsandmore. Readandlistenofflinewithanydevice. FreeaccesstopremiumserviceslikeTuneln,Mubiandmore. DiscoverMoreOnScribd × ShareClipboard × Facebook Twitter LinkedIn Link Publicclipboardsfeaturingthisslide × Nopublicclipboardsfoundforthisslide Selectanotherclipboard × Lookslikeyou’veclippedthisslidetoalready. Createaclipboard Youjustclippedyourfirstslide! Clippingisahandywaytocollectimportantslidesyouwanttogobacktolater.Nowcustomizethenameofaclipboardtostoreyourclips. Name* Description Visibility OtherscanseemyClipboard Cancel Save SharethisSlideShare SpecialOffertoSlideShareReaders × TheSlideSharefamilyjustgotbigger.Enjoyaccesstomillionsofebooks,audiobooks,magazines,andmorefromScribd. Readfreefor60days Cancelanytime.


請為這篇文章評分?