What is Data Analytics and its Future Scope in 2023
文章推薦指數: 80 %
Data analytics is the process of exploring and analyzing large datasets to find hidden patterns, unseen trends, discover correlations, ... DataScience&BusinessAnalyticsDataScience&BusinessAnalyticsAI&MachineLearningProjectManagementCyberSecurityCloudComputingDevOpsBusinessandLeadershipQualityManagementSoftwareDevelopmentAgileandScrumITServiceandArchitectureDigitalMarketingBigDataCareerFast-trackEnterpriseOtherSegmentsVideoTutorialsArticlesEbooksFreePracticeTestsOn-demandWebinarsLiveWebinarsHomeResourcesDataScience&BusinessAnalyticsDataAnalyticsTutorialforBeginners:AStep-By-StepGuideWhatisDataAnalyticsanditsFutureScopein2023TutorialPlaylistDataAnalyticsTutorialforBeginners:AStep-By-StepGuideOverviewWhatisDataAnalyticsanditsFutureScopein2023Lesson-1DataAnalyticswithPython:UseCaseDemoLesson-2AlltheInsandOutsofExploratoryDataAnalysisLesson-3Top5BusinessIntelligenceToolsLesson-4TheUltimateGuidetoQualitativevs.QuantitativeResearchLesson-5HowtoBecomeaDataAnalyst:AStep-by-StepGuideLesson-6DataAnalystvs.DataScientistLesson-7Top60DataAnalystInterviewQuestionsandAnswersfor2023Lesson-8UnderstandingtheFundamentalsofConfidenceIntervalinStatisticsLesson-9WhatisDataAnalyticsanditsFutureScopein2023Lesson1of9BySimplilearnLastupdatedonOct11,2022105243PreviousNextTutorialPlaylistDataAnalyticsTutorialforBeginners:AStep-By-StepGuideOverviewWhatisDataAnalyticsanditsFutureScopein2023Lesson-1DataAnalyticswithPython:UseCaseDemoLesson-2AlltheInsandOutsofExploratoryDataAnalysisLesson-3Top5BusinessIntelligenceToolsLesson-4TheUltimateGuidetoQualitativevs.QuantitativeResearchLesson-5HowtoBecomeaDataAnalyst:AStep-by-StepGuideLesson-6DataAnalystvs.DataScientistLesson-7Top60DataAnalystInterviewQuestionsandAnswersfor2023Lesson-8UnderstandingtheFundamentalsofConfidenceIntervalinStatisticsLesson-9TableofContentsViewMore Livinginthe21stcentury,youmighthaveoftencomeacrosstheword‘dataanalytics’.Currently,itisoneofthemostbuzzingterminologies.Forthosewhowanttobegintheirjourneyindataanalytics,thenthisistherightreadforyou. Thisblogisyourquintessentialguidetowhatisdataanalyticsandwillhelpyouunderstandthesubjectfromscratch.Forallyoubeginnerswholikeplayingwithdata,thisisyourlearningcurveforanenrichingcareer.ProfessionalCertificatePrograminDataAnalyticsInpartnershipwithPurdueUniversityViewCourse WhatisDataAnalytics? Companiesaroundtheglobegeneratevastvolumesofdatadaily,intheformoflogfiles,webservers,transactionaldata,andvariouscustomer-relateddata.Inadditiontothis,socialmediawebsitesalsogenerateenormousamountsofdata. Companiesideallyneedtousealloftheirgenerateddatatoderivevalueoutofitandmakeimpactfulbusinessdecisions.Dataanalyticsisusedtodrivethispurpose. Dataanalyticsistheprocessofexploringandanalyzinglargedatasetstofindhiddenpatterns,unseentrends,discovercorrelations,andderivevaluableinsightstomakebusinesspredictions.Itimprovesthespeedandefficiencyofyourbusiness. Businessesusemanymoderntoolsandtechnologiestoperformdataanalytics.Thisisdataanalyticsforbeginners,inanutshell. WaystoUseDataAnalytics Nowthatyouhavelookedatwhatdataanalyticsis,let’sunderstandhowwecanusedataanalytics. Fig:WaystouseDataAnalytics 1.ImprovedDecisionMaking:DataAnalyticseliminatesguessworkandmanualtasks. Beitchoosingtherightcontent,planningmarketingcampaigns,ordevelopingproducts.Organizationscanusetheinsightstheygainfromdataanalyticstomakeinformeddecisions.Thus,leadingtobetteroutcomesandcustomersatisfaction. 2.BetterCustomerService:Dataanalyticsallowsyoutotailorcustomerserviceaccordingtotheirneeds.Italsoprovidespersonalizationandbuildsstrongerrelationshipswithcustomers.Analyzeddatacanrevealinformationaboutcustomers’interests,concerns,andmore.Ithelpsyougivebetterrecommendationsforproductsandservices. 3.EfficientOperations:Withthehelpofdataanalytics,youcanstreamlineyourprocesses,savemoney,andboostproduction.Withanimprovedunderstandingofwhatyouraudiencewants,youspendlessertimecreatingadsandcontentthataren’tinlinewithyouraudience’sinterests. 4.EffectiveMarketing:Dataanalyticsgivesyouvaluableinsightsintohowyourcampaignsareperforming.Thishelpsinfine-tuningthemforoptimaloutcomes.Additionally,youcanalsofindpotentialcustomerswhoaremostlikelytointeractwithacampaignandconvertintoleads. Let’snowdiveintothevariousstepsinvolvedindataanalytics. StepsInvolvedinDataAnalytics Nextsteptounderstandingwhatdataanalyticsistolearnhowdataisanalyzedinorganizations.Thereareafewstepsthatareinvolvedinthedataanalyticslifecycle.Let’shavealookatitwiththehelpofananalogy. Imagineyouarerunningane-commercebusinessandyourcompanyhasnearlyamillionincustomerbase.Youraimistofigureoutcertainproblemsrelatedtoyourbusiness,andsubsequentlycomeupwithdata-drivensolutionstogrowyourbusiness. Belowarethestepsthatyoucantaketosolveyourproblems. Fig:DataAnalyticsprocesssteps 1.Understandtheproblem:Understandingthebusinessproblems,definingtheorganizationalgoals,andplanningalucrativesolutionisthefirststepintheanalyticsprocess.E-commercecompaniesoftenencounterissuessuchaspredictingthereturnofitems,givingrelevantproductrecommendations,cancellationoforders,identifyingfrauds,optimizingvehiclerouting,etc. 2.DataCollection:Next,youneedtocollecttransactionalbusinessdataandcustomer-relatedinformationfromthepastfewyearstoaddresstheproblemsyourbusinessisfacing.Thedatacanhaveinformationaboutthetotalunitsthatweresoldforaproduct,thesales,andprofitthatweremade,andalsowhenwastheorderplaced.Pastdataplaysacrucialroleinshapingthefutureofabusiness. 3.DataCleaning:Now,allthedatayoucollectwilloftenbedisorderly,messy,andcontainunwantedmissingvalues.Suchdataisnotsuitableorrelevantforperformingdataanalysis.Hence,youneedtocleanthedatatoremoveunwanted,redundant,andmissingvaluestomakeitreadyforanalysis. 4.DataExplorationandAnalysis:Afteryougathertherightdata,thenextvitalstepistoexecuteexploratorydataanalysis.Youcanusedatavisualizationandbusinessintelligencetools,dataminingtechniques,andpredictivemodelingtoanalyze,visualize,andpredictfutureoutcomesfromthisdata.Applyingthesemethodscantellyoutheimpactandrelationshipofacertainfeatureascomparedtoothervariables. Belowaretheresultsyoucangetfromtheanalysis: Youcanidentifywhenacustomerpurchasesthenextproduct. Youcanunderstandhowlongittooktodelivertheproduct. Yougetabetterinsightintothekindofitemsacustomerlooksfor,productreturns,etc. Youwillbeabletopredictthesalesandprofitforthenextquarter. Youcanminimizeordercancellationbydispatchingonlyrelevantproducts. You’llbeabletofigureouttheshortestroutetodelivertheproduct,etc. 5.Interprettheresults:Thefinalstepistointerprettheresultsandvalidateiftheoutcomesmeetyourexpectations.Youcanfindouthiddenpatternsandfuturetrends.Thiswillhelpyougaininsightsthatwillsupportyouwithappropriatedata-drivendecisionmaking. LookingforwardtoacareerinDataAnalytics?CheckouttheDataAnalyticsTrainingandgetcertifiedtoday. DataAnalyticsTools Nowthatwelookedatthedifferentstepsinvolvedindataanalytics,let’sseethetoolsinvolvedindataanalytics,toperformtheabovesteps.Inthisblog,wewilldiscuss7dataanalyticstools,includingacoupleofprogramminglanguagesthatcanhelpyouperformanalyticsbetter. Fig:DataAnalyticsforBeginners-Toolsused 1.Python:Pythonisanobject-orientedopen-sourceprogramminglanguage.Itsupportsarangeoflibrariesfordatamanipulation,datavisualization,anddatamodeling. 2.R:Risanopen-sourceprogramminglanguagemajorlyusedfornumericalandstatisticalanalysis.Itprovidesarangeoflibrariesfordataanalysisandvisualization. 3.Tableau:Itisasimplifieddatavisualizationandanalyticstool.Thishelpsyoucreateavarietyofvisualizationstopresentthedatainteractively,buildreports,anddashboardstoshowcaseinsightsandtrends. 4.PowerBI:PowerBIisabusinessintelligencetoolthathasaneasy‘draganddropfunctionality.Itsupportsmultipledatasourceswithfeaturesthatvisuallyappealtodata.PowerBIsupportsfeaturesthathelpyouaskquestionstoyourdataandgetimmediateinsights. 5.QlikView:QlikViewoffersinteractiveanalyticswithin-memorystoragetechnologytoanalyzevastvolumesofdataandusedatadiscoveriestosupportdecisionmaking.Itprovidessocialdatadiscoveryandinteractiveguidedanalytics.Itcanmanipulatecolossaldatasetsinstantlywithaccuracy. 6.ApacheSpark:ApacheSparkisanopen-sourcedataanalyticsenginethatprocessesdatainreal-timeandcarriesoutsophisticatedanalyticsusingSQLqueriesandmachinelearningalgorithms. 7.SAS:SASisastatisticalanalysissoftwarethatcanhelpyouperformanalytics,visualizedata,writeSQLqueries,performstatisticalanalysis,andbuildmachinelearningmodelstomakefuturepredictions. Nowthatyouhaveseenthedataanalyticstools,let’sjumpaheadandseetheapplicationsofdataanalytics. Getbroadexposuretokeytechnologiesandskillsusedindataanalyticsanddatascience,includingstatisticswiththeDataAnalyticsCertificationProgram. DataAnalyticsApplications Fig:Variousapplicationsofdataanalytics Dataanalyticsisusedinalmosteverysectorofbusiness,let’sdiscussafewofthem: 1.Retail:Dataanalyticshelpsretailersunderstandtheircustomerneedsandbuyinghabitstopredicttrends,recommendnewproducts,andboosttheirbusiness. Theyoptimizethesupplychain,andretailoperationsateverystepofthecustomerjourney. 2.Healthcare:Healthcareindustriesanalyzepatientdatatoprovidelifesavingdiagnosesandtreatmentoptions.Dataanalyticshelpindiscoveringnewdrugdevelopmentmethodsaswell. 3.Manufacturing:Usingdataanalytics,manufacturingsectorscandiscovernewcost-savingopportunities.Theycansolvecomplexsupplychainissues,laborconstraints,andequipmentbreakdowns. 4.Bankingsector: Bankingandfinancialinstitutionsuseanalyticstofindoutprobableloandefaultersandcustomerchurnoutrate.Italsohelpsindetectingfraudulenttransactionsimmediately. 5.Logistics:Logisticscompaniesusedataanalyticstodevelopnewbusinessmodelsandoptimizeroutes.This,inturn, ensuresthatthedeliveryreachesontimeinacost-efficientmanner. Thosewereafewoftheapplicationsinvolvingdataanalytics.Tomakethingssimpler,thisblogwillalsofocusonacasestudyfromWalmart.Hereyoucanobservehowdataanalyticsisappliedtogrowabusinessandserveitscustomersbetter. WalmartCaseStudy TheAmericanmultinationalretailcompany-Walmarthasover11,500storesin27countriesworldwide.Italsohase-commercewebsitesin10differentcountries.Walmartboastsmorethan5,900retailunits.TheseunitsoperateoutsidetheUnitedStates,with55bannersin26countries.Ithasmorethan700,000associatesservingmorethan100millioncustomerseveryweek.Inshort,it’saprettyhugecompany. Withallthesebignumbers,youcanimaginetheexponentialamountofdataWalmartgenerates.Walmartcollectsover2.5petabytesofdatafrom1millioncustomerseveryhour.Yes,youreadthatright.Nowtomakesenseofallthisinformation,Walmarthascreated‘DataCafé’–astate-of-the-artanalyticshub. InDataCafe,over200streamsofinternalandexternaldata,including40petabytesofrecenttransactionaldata,canbemodeled,manipulated,andvisualized. Walmartalsoconstantlyanalysesover100millionkeywordstoknowwhatpeopleneareachstorearesayingonsocialmedia.Thisgivesthemabetterunderstandingoftheircustomerbehavioronwhattheylikeanddislike. Thisglobalchainusesmoderntoolsandtechnologiestoderivebusinessinsightsandimprovecustomersatisfaction.SomeofthesetechnologiesincludePython,SAS,andNoSQLdatabasessuchasCassandraandHadoop. Usingallthesetechnologiesanddataanalysistechniques,Walmartcanbettermanageitssupplychain,optimizeproductassortment,personalizetheshoppingexperience,andgiverelevantproductrecommendations. Dataanalyticsforbeginnersshouldnotmerelybetheoretical,butalsobepractical.Dataanalyticsisalotmorepracticalthantheoretical.Hence,herewewillhavealookatademoondataanalyticsforbeginnersexclusively. FREECourse:IntroductiontoDataAnalyticsLearnDataAnalyticsConcepts,Tools&SkillsStartLearning DemoonDataAnalyticsforBeginners Companiesperformdataanalyticstopredictsalesandprofit.Inthisdemo,we’llpredictsalesbasedontheadvertisingexpenditureusingtheLinearRegressionmodelinR.TheadvertisingexpenditurehasbeenmadeviadifferentmediumssuchasTelevision,Radio,andNewspaper. Belowisthedatasetforourdemo: WewillbeusingtheRprogramminglanguageforthispurpose. Risopen-sourcesoftwarethatcanbedownloadedfromtheRCranwebsite. Itiseasytolearnandimplement. TheRlanguageisbuiltspecificallyforperformingstatisticalanalysis,datamanipulation,anddataminingusingpackageslikeplyr,dplyr,tidyr,andlubridate. Rsupportsdatavisualizationwiththehelpofpackagessuchasggplot2,googleVis,Rcolorbrewer,leaflet,andggmap. TheRsoftwarecanalsobeusedinawiderangeofanalyticalmodelingincludingclassicalstatisticaltests,linear/non-linearmodeling,dataclustering,time-seriesanalysis,andmore. So,let’sgetcoding! First,letusinstallallthenecessarypackagesthatweneedforthisdemo. install.packages("dplyr") library(dplyr) install.packages("broom") library(broom) install.packages("caTools") library(caTools)#InstallthecaToolspackagewhichwillhelpusbuildourlinearregressionmodel install.packages("ggplot2")#Installtheggplot2packagewhichwe’llusefordatavisualization library(ggplot2) Thenextstepistoloadthedataset. Forthis,youcanusetheread.csvfunctionandprovidethepathlocationwhereyourdataislocated,followedbythedatasetnameandtheextension.Youcanassigntheloadeddatasettoavariable. ads
延伸文章資訊
- 1Data analysis - Wikipedia
Data analysis is a process of inspecting, cleansing, transforming, and modelling data with the go...
- 27 In-Demand Data Analyst Skills to Get You Hired in 2022 | Coursera
- 3What is Data Analytics? - Definition from WhatIs.com
Data analytics (DA) is the process of examining data sets in order to find trends and draw conclu...
- 4Google Data Analytics Professional Certificate - Coursera
- 5What is Data Analytics? - Master's in Data Science
Data analytics helps individuals and organizations make sense of data. Data analysts typically an...