Examining the potential clinical value of curcumin in the ...
文章推薦指數: 80 %
Curcumin derived from turmeric is well documented for its anti-carcinogenic, antioxidant and anti-inflammatory properties. Recent studies show that curcumin ... Skiptomaincontent Accessibilityhelp Weusecookiestodistinguishyoufromotherusersandtoprovideyouwithabetterexperienceonourwebsites.Closethismessagetoacceptcookiesorfindouthowtomanageyourcookiesettings. Cancel Login × × Home OnlysearchcontentIhaveaccessto Hostname:page-component-7f7b94f6bd-82ts8 Totalloadingtime:3.67 Renderdate:2022-06-30T11:47:37.758Z Hasdataissue:true FeatureFlags:{ "shouldUseShareProductTool":true, "shouldUseHypothesis":true, "isUnsiloEnabled":true, "useRatesEcommerce":false, "useNewApi":true } hasContentIssuetrue Home>Journals>BritishJournalofNutrition>Volume115Issue3>Examiningthepotentialclinicalvalueofcurcumin...English Français BritishJournalofNutritionArticlecontentsAbstractBeneficialpropertiesofcurcumin–historicalperspectivePotentiallyneuroprotectivepropertiesofcurcumin:animalstudiesandinvitroanti-βamyloidactivityofcurcuminpreventsβamyloidaggregationFocusingonfindingsinanimalstudiesEffectsofcurcuminonhumancognitionEpigenetics,Alzheimer’sdiseaseandcurcuminCurcuminsafetyprofile,tolerability,bioavailabilityandmodeofadministrationCurcuminasafluorochrome/radioligandinAlzheimer’sdiseasediagnosisReferencesExaminingthepotentialclinicalvalueofcurcumininthepreventionanddiagnosisofAlzheimer’sdisease PublishedonlinebyCambridgeUniversityPress: 14December2015K.G.Goozee,T.M.Shah,H.R.Sohrabi,S.R.Rainey-Smith,B.Brown,G.Verdile andR.N.MartinsShowauthordetailsK.G.GoozeeAffiliation:McCuskerKARVIAHResearchCentre,AnglicanRetirementVillages,Sydney,NSW2154,Australia SchoolofMedicalSciences,CentreofExcellenceforAlzheimer’sDiseaseResearchandCare,EdithCowanUniversity,Joondalup,WA6027,Australia SchoolofPsychiatryandClinicalNeurosciences,UniversityofWesternAustralia,Crawley,WA6009,Australia T.M.ShahAffiliation:SchoolofMedicalSciences,CentreofExcellenceforAlzheimer’sDiseaseResearchandCare,EdithCowanUniversity,Joondalup,WA6027,Australia SirJamesMcCuskerAlzheimer’sDiseaseResearchUnit,HollywoodPrivateHospital,Nedlands,WA6009,Australia H.R.SohrabiAffiliation:SchoolofMedicalSciences,CentreofExcellenceforAlzheimer’sDiseaseResearchandCare,EdithCowanUniversity,Joondalup,WA6027,Australia SirJamesMcCuskerAlzheimer’sDiseaseResearchUnit,HollywoodPrivateHospital,Nedlands,WA6009,Australia S.R.Rainey-SmithAffiliation:SchoolofMedicalSciences,CentreofExcellenceforAlzheimer’sDiseaseResearchandCare,EdithCowanUniversity,Joondalup,WA6027,Australia SirJamesMcCuskerAlzheimer’sDiseaseResearchUnit,HollywoodPrivateHospital,Nedlands,WA6009,Australia B.BrownAffiliation:SchoolofMedicalSciences,CentreofExcellenceforAlzheimer’sDiseaseResearchandCare,EdithCowanUniversity,Joondalup,WA6027,Australia SirJamesMcCuskerAlzheimer’sDiseaseResearchUnit,HollywoodPrivateHospital,Nedlands,WA6009,Australia G.VerdileAffiliation:SchoolofMedicalSciences,CentreofExcellenceforAlzheimer’sDiseaseResearchandCare,EdithCowanUniversity,Joondalup,WA6027,Australia SirJamesMcCuskerAlzheimer’sDiseaseResearchUnit,HollywoodPrivateHospital,Nedlands,WA6009,Australia SchoolofPsychiatryandClinicalNeurosciences,UniversityofWesternAustralia,Crawley,WA6009,Australia SchoolofBiomedicalSciences,CurtinHealthInnovationResearchInstituteBiosciences,CurtinUniversity,Bentley,WA6102,Australia R.N.Martins*Affiliation:McCuskerKARVIAHResearchCentre,AnglicanRetirementVillages,Sydney,NSW2154,Australia SchoolofMedicalSciences,CentreofExcellenceforAlzheimer’sDiseaseResearchandCare,EdithCowanUniversity,Joondalup,WA6027,Australia SirJamesMcCuskerAlzheimer’sDiseaseResearchUnit,HollywoodPrivateHospital,Nedlands,WA6009,Australia SchoolofPsychiatryandClinicalNeurosciences,UniversityofWesternAustralia,Crawley,WA6009,Australia * *Correspondingauthor:ProfessorR.N.Martins,fax+61893474299,[email protected] Figures Metrics ArticlecontentsAbstractBeneficialpropertiesofcurcumin–historicalperspectivePotentiallyneuroprotectivepropertiesofcurcumin:animalstudiesandinvitroanti-βamyloidactivityofcurcuminpreventsβamyloidaggregationFocusingonfindingsinanimalstudiesEffectsofcurcuminonhumancognitionEpigenetics,Alzheimer’sdiseaseandcurcuminCurcuminsafetyprofile,tolerability,bioavailabilityandmodeofadministrationCurcuminasafluorochrome/radioligandinAlzheimer’sdiseasediagnosisReferencesSavePDFSavePDF(0.57mb)ViewPDF[Opensinanewwindow]SavetoDropboxSavetoGoogleDriveSavetoKindleShareCiteRights&Permissions[Opensinanewwindow]AbstractCurcuminderivedfromturmericiswelldocumentedforitsanti-carcinogenic,antioxidantandanti-inflammatoryproperties.Recentstudiesshowthatcurcuminalsopossessesneuroprotectiveandcognitive-enhancingpropertiesthatmayhelpdelayorpreventneurodegenerativediseases,includingAlzheimer’sdisease(AD).Currently,clinicaldiagnosisofADisonerous,anditisprimarilybasedontheexclusionofothercausesofdementia.Inaddition,phaseIIIclinicaltrialsofpotentialtreatmentshavemostlyfailed,leavingdisease-modifyinginterventionselusive.ADcanbecharacterisedneuropathologicallybythedepositionofextracellularβamyloid(Aβ)plaquesandintracellularaccumulationoftau-containingneurofibrillarytangles.DisruptionsinAβmetabolism/clearancecontributetoADpathogenesis.InvitrostudieshaveshownthatAβmetabolismisalteredbycurcumin,andanimalstudiesreportthatcurcuminmayinfluencebrainfunctionandthedevelopmentofdementia,becauseofitsantioxidantandanti-inflammatoryproperties,aswellasitsabilitytoinfluenceAβmetabolism.However,clinicalstudiesofcurcuminhaverevealedlimitedeffectstodate,mostlikelybecauseofcurcumin’srelativelylowsolubilityandbioavailability,andbecauseofselectionofcohortswithdiagnosedAD,inwhomthereisalreadymajorneuropathology.However,thefreshapproachoftargetingearlyADpathology(bytreatinghealthy,pre-clinicalandmildcognitiveimpairment-stagecohorts)combinedwithnewcurcuminformulationsthatincreasebioavailabilityisrenewingoptimismconcerningcurcumin-basedtherapy.TheaimofthispaperistoreviewthecurrentevidencesupportinganassociationbetweencurcuminandmodulationofADpathology,includinginvitroandinvivostudies.Wealsoreviewtheuseofcurcumininemergingretinalimagingtechnology,asafluorochromeforADdiagnostics.KeywordsCurcuminAlzheimer’sdiseaseAmyloidRetinalimaging Type FullPapers Information BritishJournalofNutrition , Volume115 , Issue3,14February2016,pp.449-465DOI:https://doi.org/10.1017/S0007114515004687[Opensinanewwindow] CreativeCommons ThisisanOpenAccessarticle,distributedunderthetermsoftheCreativeCommonsAttributionlicence(http://creativecommons.org/licenses/by/4.0/),whichpermitsunrestrictedre-use,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. Copyright Copyright©TheAuthors2015 Withtheageingofmanypopulationsworldwide,itispredictedthatoverthenextfewdecadestherewillbeamarkedincreaseinthenumberofpeoplewithdementia.Currentestimationsshowthat35·6millionpeopleworldwidehavedementia,whichispredictedtomorethantripleto115millionby2050( ReferencePrinceandJackson 1 ).Ofallthedementiasub-types,Alzheimer’sdisease(AD)isthemostcommon.ADisaneurodegenerativedisease,whichischaracterisedclinicallybytheprogressivelossofmemoryandcognitivefunctioning.MajorpathologicalfeaturesofanADbrainincludetheaccumulationofextracellularplaquesandfibrils,intracellularneurofibrillarytangles(NFT),aswellaschronicinflammationandwidespreadsynapticandneuronalloss,leadingtobrainatrophyanddysfunction.ThedepositionofamyloidplaquesissuggestedasadefiningfeatureoftheADbrain,asNFTarefeaturedinotherneurodegenerativediseases( ReferenceLee,GoedertandTrojanowski 2 , ReferenceFrost,KanagasingamandMacaulay 3 )(althoughplaqueshavealsobeenreportedincasesofnon-ADdementias).Nevertheless,hyper-phosphorylatedtauprotein,themajorcomponentofNFT,mayhaveacriticalroleintheprogressionofAD,asitactstogetherwiththemajorproteincomponentofamyloidplaques,βamyloid(Aβpeptides),drivingneurodegeneration( ReferenceIttnerandGötz 4 , ReferenceIttner,KeandDelerue 5 ).TheAβpeptideisgeneratedfromitsparentmolecule,amyloidprecursorprotein(APP),viasequentialproteolyticprocessingbytheenzymesβ-APP-cleavingenzyme-1(BACE1)andγ-secretase( ReferenceKrishnaswamy,VerdileandGroth 6 ),togeneratemultipleAβformsofvaryingaminoacidlengths.Aβpeptidesaggregatereadilyintooligomersandfibrils,andsmalloligomersofthelonger,moreeasilyaggregating42-amino-acidform(Aβ1-42)areconsideredtobethemostneurotoxicAβspeciesintheADbrain.Amyloiddepositionisthoughttooccurearlyinthediseaseprocess( ReferenceVillemagne,BurnhamandBourgeat 7 ),andtheaccumulationofsmallAβaggregates(‘oligomers’)isthoughttohaveacriticalroleinearlypathogeniceventsthatincludetauhyperphosphorylationandaccumulation,oxidativestressandinflammatoryprocessesthatleadtoneurodegenerationintheADbrain( ReferenceIttnerandGötz 4 , ReferenceWalshandTeplow 8 , ReferenceO’Malley,OktavianiandZhang 9 ). Withnocurrenteffectivedisease-modifyingtreatmentsavailable,findingpharmacological/non-pharmacologicalstrategiestohaltorslowdiseaseprogressionisofsignificantimportance.ThefailureofpotentialpharmaceuticalsinhumanclinicaltrialshashighlightedtheneedforresearchintoearlydiagnosisofAD.Thisisbecauseoftheconsiderablesynapticloss,neuronallossandbrainshrinkagealreadypresentbythetimeADclinicalsymptomsemerge,withtreatmentsaimedatslowingtheprogressofthediseasemorelikelytobeeffectivebeforeonsetofsymptoms,preferablyattheearliestpre-clinicalstage.Thecontinuinglackofeffectivepharmaceuticaldrugshasalsopromptedtheevaluationofalternativetherapeutics,suchasnutraceuticals.Curcuminisoneexamplewhere,becauseofitspropertiesasananti-inflammatory,antioxidant,Aβ-loweringagentandAβaggregationinhibitor,itshowspotentialasatherapeuticforAD.Inaddition,becauseofitsabilitytofluoresceandbindAβ,curcuminhaspotentialasanimagingagentfordiagnostics.Thisreviewoutlinesinvitro,invivoandhumanstudiesthathaveevaluatedthetherapeuticpotentialofcurcumininAD,anditdiscussesrecentresearchthathasassessedcurcuminasadiagnostictoolthroughitsuseinemergingretinalimagingtechnologies.AllhumanstudiesidentifiedinthisreviewmetcurrentNationalInstituteofHealthandtheAlzheimer’sAssociationdiagnosticguidelines( ReferenceMcKhann,KnopmanandChertkow 10 ). Beneficialpropertiesofcurcumin–historicalperspective Curcuminisextractedfromturmeric,aspicethatisderivedfromtherhizomesofCurcumaLongaandwhichbelongstotheZingiberaceae(ginger)family.Turmericisaperennialherb,nativetothemonsoonforestsofsouth-eastAsia,anditiscommonlyusedinIndian,AsianandMiddleEasternfoods.Inadditiontobeingusedasaculinaryspice,turmeric(SanskritHaridra,meaningthatwhichisyellow)hasbeenafrequentlyprescribedherbalmedicine.Reputedforitsblood-purifyingabilities( ReferenceMajeed,BadmaevandMurrary 11 – ReferenceGoel,KunnumakkaraandAggarwal 13 ),AyurvedamedicineandtraditionalPersianandChinesemedicinehaveprescribedcurcuminforcenturiesforitsbody-cleansingproperties,aswellasforpainassociatedwithinflammationoftheskinandmuscles.Curcuminhasalsobeenprescribedforasthma,bronchialhyperreactivity,allergy,anorexia,coryza,cough,sinusitisandhepaticdisease( ReferenceAmmonandWahl 14 ). Only3–5%ofturmericcomprisestheyellow-pigmentedchemicallyactivecurcuminoids,beingcurcumin(diferuloylmethane),demethoxycurcumin(DMC)andbisdemethoxycurcumin(BDMC)( ReferenceBegum,JonesandLim 15 ).Curcumin,consideredthemosttherapeuticofthethreecurcuminoids,wasfirstisolatedin1815byVogelandPelletier( ReferenceZhou,BeeversandHuang 16 ),althoughitschemicalstructurewasnotconfirmeduntilalmostacenturylater( ReferenceMilobedeska,KostaneckiandLampe 17 ). Thetwenty-firstcenturyhaswitnessedrenewedinterestincurcumin’sreputedtherapeuticeffects,whichhasresultedinconsiderablescientificenquiryandreview( ReferenceGoel,KunnumakkaraandAggarwal 13 , ReferenceZhou,BeeversandHuang 16 , ReferenceHamaguchi,OnoandYamada 18 – ReferenceBasnetandSkalko-Basnet 21 ).Cellstudies( ReferencePan,Lin-ShiauandLin 22 – ReferenceZhang,BrowneandChild 24 )reportcurcumintopossesspowerfulanti-inflammatoryproperties,whereasfurtherresearchinavarietyofinflammatoryconditionsdemonstratesitspotential.Forexample,animalandcellculturestudiesshowthatcurcuminreducesinflammationinarthritis( ReferenceJoe,RaoandLokesh 25 , ReferenceJackson,HigoandHunter 26 );humancelllinestudiesshowthatcurcuminiseffectiveinthemanagementofirritablebowelsyndrome( ReferenceHanaiandSugimoto 27 )andinhumanclinicaltrialsforpsoriasisandotherskindisorders( ReferenceKurd,SmithandVanVoorhees 28 , ReferenceThangapazham,SharmaandMaheshwari 29 ).Anti-proliferativeandanti-angiogenicinfluencesofcurcuminhavealsobeendemonstrated,anditstherapeuticbenefitsareshowninhumancancercellandtissueculture,includingprostate( ReferenceTsui,FengandLin 30 ),breast( ReferenceLiuandChen 31 ),pancreatic( ReferenceFriedman,LinandBall 32 )andbowelcancer( ReferenceLim,LeeandHuang 33 ),aswellasheadandnecksquamouscellcarcinoma( ReferenceJackson-Bernitsas,IchikawaandTakada 34 ). Curcuminisalsoconsideredapowerfulantioxidant,reportedtobeseveraltimesmorepotentthanvitaminEasafree-radicalscavenger( ReferenceZhao,LiandHe 35 ).Curcumin’santi-inflammatoryandantioxidantpropertieshavemorerecentlybeeninvestigatedwithrespecttoAD,asitisnowwellestablishedthatoxidativestress( ReferenceMartins,HarperandStokes 36 )andchronicinflammationarecentralintheearlypathogenicstagesofAD( ReferenceHardyandSelkoe 37 ).However,inadditiontocurcuminalteringADdevelopmentthroughanti-inflammatoryandantioxidantproperties,curcumin’sabilitytobindtoAβ,influencedepositionandaggregation,whilepossiblyalsomodulatingtauprocessing,hasattractedconsiderableinterestinADresearchlaboratories( ReferenceHuangandJiang 38 – ReferenceMutsuga,ChambersandUchida 41 ). ExtracellularAβplaquesandintraneuronalhyper-phosphorylatedtauarerecognisedashallmarkneuropathologicalfeaturesofAD( ReferenceKosik,JoachimandSelkoe 42 – ReferenceMasters,MulthaupandSimms 44 )inadditiontooxidativestressandinflammation,anditisbelievedthatabnormalAβmetabolism,resultinginhighlevelsoftoxicAβoligomers,combinedwithoxidativestressandinflammationformanADpathogeniccycleofneurodegeneration.Whiletheinitiatingstepofthisneurodegenerationremainstobeelucidated,thesechangesarethoughttobegindecadesbeforeclinicaldiagnosis;infact,theaccumulationofAβhasbeenshowninradiologicalimagingtostart20yearsormorebeforethefirstclinicalsignsofAD( ReferenceVillemagneandRowe 45 ).Aβaccumulationisreportedtobeassociatedwithimpairedsynapticfunction( ReferenceHaassandSelkoe 46 ),reducedneuriteoutgrowth( ReferenceManczak,MaoandCalkins 47 ),cerebralatrophy( ReferenceCash,LiangandRyan 48 , ReferenceChetelat,VillemagneandVillain 49 )andreducedcognitiveperformance,particularlywhendepositedwithinthetemporalregion( ReferenceChetelat,VillemagneandPike 50 ).Synaptic/neuronallossandNFTloadhavebeenshowntocorrelatepositivelywithcerebralatrophyandcognitivedecline,whereascerebralAβloadalsocorrelateswithcognitivedecline,althoughtoalesserextent( ReferenceVillemagne,BurnhamandBourgeat 7 ).However,thereisalsoalargebodyofevidencesuggestingthatsmalloligomersofAβareparticularlytoxictoneurons,causingmembranedamage,Ca2+leakage,oxidativedamage,disruptionstoinsulinsignallingpathwaysandsynapticfunction,aswellasmitochondrialdamage( ReferenceReddy,TripathiandTroung 51 – ReferenceZhao,LuoandJang 53 ).Asmentionedabove,Aβ-inducedchangesarebelievedtooccurearlyinthediseaseprocess,andthefindingsindicatethatinterventionsthatcaninterrupttheproductionofAβorAβoligomers,orfacilitatetheirremovalfromthecentralnervoussystem,arehighlydesirable.Modelledprojectionssuggestthatdelayingtheonsetofdementiabyeven1yearmayreducetheworldwideburdenofcasesinpeopleover60yearsbyasmuchasapproximately10%( ReferenceJohnson,BrookmeyerandZiegler-Graham 54 ),whereastheintroductionofaninterventionthatdelaystheonsetofdementiaby5yearscouldreducetheincidencebyalmosthalf( ReferenceBrookmeyer,GrayandKawas 55 , ReferenceVickland,MorrisandDraper 56 ).Therefore,earlypre-clinicalpreventiontherapy,whichcouldinfluencetheaccumulationorclearanceofcerebralAβandtaupathology,and/orreduceoxidativestressandchronicinflammation,thusslowingorreversingthesepathologicalchanges,wouldbehighlysignificantforthereductionofADprevalence. Potentiallyneuroprotectivepropertiesofcurcumin:animalstudiesandinvitroanti-βamyloidactivityofcurcuminpreventsβamyloidaggregation TheAβpeptideaggregatesreadily,firstintosmallaggregatesofAβknownasAβoligomersandthentheseoligomersaggregatefurthertoformfibrils,largerfibrilsandultimatelyplaquesofAβ.Althoughplaquesandlargefibrilsaretheeasiesttodetectimmunohistochemically,theseareconsideredtoberelativelyinert:asmentionedabove,thereisnowconsiderableevidencethatsmallAβoligomersarethemainneurotoxicspecies( ReferenceBieschke,HerbstandWiglenda 57 ).Therefore,itisinterestingthatsubstantialdatafrominvitrostudiesindicatethatcurcumincanbindtoAβandinfluenceitsaggregation.Forexample,curcuminhasbeenshowntoinhibitfibrilformationandextension,aswellastodestabilisepre-formedfibrilsinadose-dependentmanner,effectiveatconcentrationsabout0·1–1·0µm ( ReferenceOno,HasegawaandNaiki 58 ).LaterstudieshavesimilarlyshownthatcurcumincaninhibittheformationofsmallAβaggregates(Aβoligomers)inadose-dependentmanner( ReferenceReinkeandGestwicki 59 , ReferenceYang,LimandBegum 60 ). StudieshaveinvestigatedhowcurcumininfluencesAβaggregation,anddifferenttheorieshaveemerged–forexample,onetheoryinvolvescurcuminbindingtometalions.BiometalssuchasCu(Cu(II))andZn(Zn(II))arefoundinabundanceinthebrain,particularlyatsynapses.DysregulationofmetalhomeostasiscanleadtothebindingoftheseparticularmetalionstoAβ,andmanystudieshaveshownthatthisbindingacceleratesAβaggregation.Infact,elevatedlevelsofcertainmetalionshavebeenassociatedwithAD( ReferenceGhalebani,WahlstromandDanielsson 61 ),andconsiderableresearchhasbeenundertakentounderstandthenormalrolesoftheseionsinthebrain,aswellastherolestheionsmayhaveindiseasepathogenesis,particularlytherolesofCu(II)andZn(II)onAβaggregation( ReferenceFallerandHureau 62 ).SomerecentstudieshavesuggestedthatcurcumincomplexeswithCu(II)and/orZn(II)andthatthisinhibitsthetransitionfromlessstructuredoligomertoβ-sheet-richAβprotofibrils,whichinturnactasseedingfactorsforfurtherAβfibrillisation( ReferenceBanerjee 63 ).Recentstudieslookingattheeffectofcurcuminandcurcuminderivativesonmetal-inducedAβaggregationhaveshownthatGd-linkedcurcumin(Gd-Cur,apotentialAβimagingagent),comparedwithcurcuminandCur-S,awater-solubleformofcurcumin,couldmodulateCu-inducedAβaggregationtoagreaterextent( ReferenceKochi,LeeandVithanarachchi 64 ),supportingtheconceptoftherapeuticanddiagnosticusesfortheGd-Curcompounds. Othertheoriesdonotinvolvemetalions;instead,theysuggestthatcurcumin’sabilitytobindAβandinhibititsaggregationisbecauseofcurcumin’sthreestructuralfeatures:ahydroxylsubstitutiononthearomaticendgroup,arigidlinkerregionbetween8and16Åinlengthandasecondterminalphenylgroup( ReferenceReinkeandGestwicki 59 ).Morerecentstudiesusingatomicforcemicroscopyhavefoundthatcurcumin(andanothersmall-moleculeinhibitorresveratrol)bindstotheNterminus(residues5–20)ofAβ1-42monomersandpreventsoligomersof1–2nminsizefrombecominglarger3–5nmoligomers( ReferenceFu,AucoinandAhmed 65 ).YetanotherrecentstudyhasusedNMRspectroscopytoinvestigatethestructuralmodificationsofAβ1-42aggregatesinducedbycurcumin,andfoundthatcurcumininducesmajorstructuralchangesintheAsp-23–Lys-28saltbridgeregionandneartheAβ1-42Cterminus( ReferenceMithu,SarkarandBhowmik 66 ).ThestudyalsousedelectronmicroscopytoshowthattheAβ1-42fibrilsaredisruptedbycurcumin.Interestingly,inaDrosophilaADmodel,curcumin-fedfliesshowedacceleratedconversionofpre-fibrillartofibrillarAβ,therebyreducingtheneurotoxicityofpre-fibrillarAβ ( ReferenceCaesar,JonsonandNilsson 67 ).Overall,curcumineffectsarenotlimitedtomodulationofAβaggregation,andfurtherstudiesareneededtodeterminewhicheffect(s)arethemostrelevantinpromotingbrainhealthinpathologicalcognitivedecline. Curcumininfluencesβamyloidproduction InvitrostudieshaveshownthatAβproductionisinfluencedbycurcumin,ascurcuminhasbeenfoundtoinhibittheproductionofAβpeptidesbyalteringAPPtraffickingthroughthesecretorypathway( ReferenceZhang,BrowneandChild 24 ).Zhangetal.treatedmouseprimarycorticalneuronswithdifferentconcentrationsofcurcumin(1–20μm)for24handfoundthatbothAβ1-40andAβ1-42levelssignificantlydecreasedcomparedwithcontrols.ItwassuggestedthatcurcumincouldstabiliseanimmatureformofAPPandreducetheamountreachingthecellsurface,thusbeingavailableforendocytosis–aprocessnecessaryforAβproduction.InanAPP-transfectedhumanembryonickidneycellculturemodel(SwAPPHEK293),BDMCwasshowntoreduceBACE1messengerRNA(mRNA)andproteinlevels,whereasDMConlyaffectedBACE1mRNAexpression( ReferenceLiu,LiandQiu 68 ).Furthermore,inotherstudiesusinganeuronalcellline(pheochromocytomacells–thePC12cellline)3–30µmcurcuminsuppressedAβ-inducedBACE1up-regulation( ReferenceShimmyo,KiharaandAkaike 69 , ReferenceLi,ZhangandSi 70 ).Mostrecently,instudiesofanADDrosophilamodel,itwasfoundthatthecurcumincomponentBDMCwasthemosteffectiveatrescuingthefliesfromthemorphologicalandbehaviouraldefectscausedbytheoverexpressionofAPPandBACE1 ( ReferenceWang,KimandLee 71 ),possiblyviainhibitionoftheBACE1enzyme.Recognisingcurcumin’sabilitytoreduceAβproduction,byreducingBACE1mRNAanditscorrespondingprotein( ReferenceSathya,PremkumarandKarthick 72 ),curcuminhasbeenusedasapotentpositivecontrolintheanalysisofothercompounds/drugsthattargetnotonlyBACE1butalsometalchelation,Aβaggregationandoxidation( ReferenceJiaranaikulwanitch,GovitrapongandFokin 73 ).Insupportofcurcumin’smetalchelationproperties,curcuminwasshowntopreventtheup-regulationofAPPandBACE1inducedbysupraphysiologicallevelsofthemetalionsCu(II)andMn( ReferenceLin,ChenandLi 74 ). Curcumincaninhibitβamyloid-inducedtoxicity PreviousstudiessupportthenotionthatcurcumincanreduceAβ-inducedtoxicity.AstudybyParketal.( ReferencePark,KimandCho 75 )usedPC12cellculturespre-treatedwith10μg/mlcurcuminbeforeAβexposure.Comparedwithcontrols,pre-treatedcellshadasignificantreductioninoxidativestress,aswellaslowerCainflux,resultinginprotectionagainstDNAdamageandcelldeath.Curcumin(1–30μm)hasalsobeenshowntoattenuatetheproductionofAβ-inducedradicalO2speciesinneuronalcellcultures,and20μmcurcuminhasbeenshowntopreventstructuralchangesinAβtowardsβ-sheet-richsecondarystructures( ReferenceShimmyo,KiharaandAkaike 69 ).Furthermore,theprotectioncurcuminprovidedtoPC12cellsandtohumanumbilicalveinendothelialcellsagainstAβ1-42-inducedinjurywasattributedbyKimetal. ( ReferenceKim,ParkandKim 76 )toantioxidantmechanismsofcurcuminoids.Morerecently,invitrostudiesofmicrogliahaveshownthatcurcumincandampeninflammatorypathwaysthatpromoteneurodegeneration( ReferenceShi,ZhengandLi 77 ).Inthisstudy,curcumindose-dependentlyimprovedviabilityagainstAβ-42-inducedinflammation,asitabolishesAβ-42-inducedIL-1β,IL-6andTNF-αproduction.CurcuminwasalsoshowntoreduceERK1/2andp38phosphorylation,whichwasthenshowntoreducecytokineproductionbythemicroglia( ReferenceShi,ZhengandLi 77 ). Curcumin’sneuroprotectivepropertiesmayalsobeattributedtoitsroleincellsignalling.CellsignallingbytheWntpathways,viathetranscriptionco-activatorβ-catenin,controlsembryonicdevelopment,cellularproliferationandneurogenesis.Disruptionstothispathwayhavebeenshowntohaveasignificantroleinthepathogenesisofdiversediseasessuchascancer,metabolicdiseases,osteoporosis,epilepsy,aswellasAD.InstudiesofAPP-transfectedneuroblastomacells,curcuminwasfoundtoactivatetheWnt/β-cateninsignallingpathwaybyinhibitingtheactivityofglycogensynthasekinase3β(GSK-3β)( ReferenceZhang,YinandShi 78 ).GSK-3βisanegativeregulatorofWnt,andthusloweringitsactivitywillactivateWnt.However,justasimportantly,constitutivelyactiveGSK-3βcontributestoaberranttauphosphorylationandNFTformation,whicharehallmarkpathologicalchangesinAD( ReferenceOlivia,VargasandInestrosa 79 ),andthuscurcumin-inducedinhibitionofGSK-3βmayalsoreduceNFTformation.However,thebenefitsofcurcumininattenuatingtauphosphorylationandaccumulationhaveyettobeinvestigatedthoroughly.Interestingly,AβoligomershavealsobeenshowntoinactivateWntinhippocampalslices,byinducingtheWntantagonistDickkopf-1( ReferencePurro,DickinsandSalinas 80 ).ThesestudiescollectivelysuggestthatcurcumincaninfluenceGSK-3βandWnt/β-cateninsignalling,whicharebothkeyfactorsinADpathogenesis( ReferenceWan,XiaandKalionis 81 ).Furthermore,ithasbeenshownrecentlythatactivationoftheWnt/β-cateninsignallingpathwayinhibitsthetranscriptionofBACE1bybindingofT-cellfactor-4totheBACE1promotergene,therebyreducingthegenerationofAβ ( ReferenceParr,MirzaeiandChristian 82 ).Otherrecentstudiesusingmolecularmodellingsoftwareprogramshaveidentifiedcurcuminandrosmarinicacidaspromisingligandsthatmimictheinhibitoryactionofpeptidylinhibitorsofcaspase-3( ReferenceKhan,AkhtarandSharma 83 ).TherelationshipsbetweenAD-relatedproteinsandpathwaysdiscussedaboveprovidefurtherindicationofcurcumin’stherapeuticpotentialforthepreventionofAD. Curcuminandtheclearanceofβamyloid Oneanti-ADtherapeuticapproachinvolvesenhancingtheclearanceofAβfromthebrain.SeveralmechanismshavebeenproposedtoassistnormalclearanceofAβfromthebrain,suchasenhancingreceptor-orapo-mediatedtransportacrosstheblood–brainbarrier(BBB),effluxofAβfromthebrainbeingthebasisoftheperipheralsinkhypothesis,targetedimmuneresponsestoAβ,dissolutionofamyloidfibrilsandmicroglialactivationresultinginphagocytosisofamyloidplaques,asreviewedbyBatesetal.( ReferenceBates,VerdileandLi 84 ).ThesignificanceoftheinnateimmunesysteminAβclearanceremainspertinenttointerventionandtreatmentmodalities.Althoughpreviousattemptstousevaccinestoaugmenttheimmuneresponsewerehaltedbecauseoftheincidenceofsterileencephalitis( ReferenceFoster,VerdileandBates 85 ),interestinthisarearemainsstrong.MacrophageactivityandphagocytosisofAβhasbeenreportedtobedeficientinAD,suggestingacontributoryfactortoAβaccumulation( ReferenceFiala,LinandRingman 86 ).Furthermore,alaterstudythatpre-treatedtheADmacrophageswithcurcuminoidsresultedinincreasedAβuptakein50%ofthemacrophages( ReferenceZhang,FialaandCashman 87 ). Curcumin’sabilitytoreduceoxidativedamageandamyloidpathologyinADtransgenicmice,demonstratedbyGarcia-Allozaetal.( ReferenceGarcia-Alloza,BorrelliandRozkalne 40 ),alsosuggeststhatcurcumincaninfluenceamyloid-inducedcytopathology,ormacrophageprocessingofamyloid.Garcia-Allozaetal.usedmulti-photonandinvivoimagingtorevealamarkedamyloidclearanceeffect,with30%plaquesizereductionandslowedplaquedevelopment,inanimalsreceivingcurcuminfor7dviaintravenoustailinjections.Fialaetal. ( ReferenceFiala,LinandRingman 86 )examinedcurcumin’seffectonenhancingphagocytosisofAβatamolecularlevel,andfoundthatcurcuminrestoredthenormalAβ-inducedup-regulationofthetranscriptionofβ-1,4-mannosyl-glycoprotein4β-N-acetylglucosaminyltransferase(MGAT3),anenzymethoughttobeinvolvedinphagocytosis.Otherproteinssuchastoll-likereceptorswerealsoup-regulated.TheseresultsindicatethatcurcuminmaycorrectimmunedefectsinADpatients,suggestinganovelapproachtoADimmunotherapy( ReferenceFiala,LiuandEspinosa-Jeffrey 88 ).Inmorerecentstudiesbythesamegroup,itwasfoundthat1α,25(OH)2-vitaminD3(1,25D3)couldrestorethedefectiveAβphagocytosisinADmacrophages,andthatanuclearvitaminDreceptorantagonistcouldblockthisphagocytosis.Allphagocytesseemedtorespondto1,25D3,yetonlyasubsetrespondedtocurcuminoidsbyup-regulatingMGAT3.Nevertheless,inthosewhodidrespond,furtherstudiesdemonstratedthatthe1,25D3boundtoapocketofthevitaminD3receptorthatinfluencesgenomicevents,andcurcuminoidsboundtoanon-genomicpocket( ReferenceMasoumi,GoldensonandGhirmai 89 , ReferenceMizwicki,MenegazandBarrientos-Durán 90 ),producedanadditiveeffect. Curcumineffectsonlipidmetabolism Earlyresearch( ReferenceSoniandKuttan 91 – ReferenceSreejayanandRao 93 )reportedthatcurcuminhadcholesterol-loweringability,supportedbyPescheletal. ( ReferencePeschel,KoertingandNass 94 )whoreportedthatcurcuminhasahypocholesterolaemiceffect,basedonitseffectonhepaticgeneexpression.Fengetal.( ReferenceFeng,OhlssonandDuan 95 )alsofoundcurcumintolowercholesterollevelsthroughsuppressionofNiemannPickC1-like1protein,whichisresponsiblefortheuptakeofcholesterolthroughvesicularendocytosiswithintheintestine.Anotherpotentialmechanismforthehypocholesterolaemiceffectofcurcuminwasrevealedinstudiesofratsfedahigh-fatdiet,inwhichcurcuminwasfoundtodecreasesignificantlytheserumlevelsofTAG,totalcholesterolandLDL-cholesterol,whencomparedwithacontrolgroup:curcuminwasfoundtoup-regulatemRNAlevelsofcholesterol7α-hydroxylase(CYP7A1),arate-limitingenzymeinthebiosynthesisofbileacidfromcholesterol( ReferenceKimandKim 96 ).Morerecently,treatmentofsimilarhigh-fatdiet-fedratswithcurcumincombinedwithpiperinewasfoundtoproducesimilarchangestotheserumlipidprofilesoftheratsandincreasedHDLlevels,resultinginsignificantup-regulationoftheactivitiesandgeneexpressionofapoA-I,lecithin–cholesterolacyltransferase,CYP7A1andtheLDLreceptor( ReferenceTu,SunandZeng 97 ).AshypercholesterolaemiacontinuestobeconsideredalikelycontributortoADrisk( ReferenceZambón,QuintanaandMata 98 , ReferenceRefolo,PappolaandMalester 99 ),theuseofcurcuminifproventolowercholesterolcouldrepresentanotherapproach,addingtothearmouryforADriskreduction. Curcuminandtelomerase Xiaoetal.( ReferenceXiao,ZhangandLin 100 ),investigatingtheroleoftelomerase(aribonuclearproteincomplexthatsynthesisesandelongatestelomericDNA)intheneuroprotectiveefficacyofcurcumin,foundcurcumintobeprotectiveagainstAβ-inducedoxidativestressandcelltoxicity.ThisneuroprotectionwaslostwhentelomerasewasinhibitedbytelomeraseRTsmallinterferingRNA,indicatingthattheneuroprotectionprovidedbycurcuminwasdependentonthepresenceoftelomerase. Focusingonfindingsinanimalstudies SeveralinvivostudieshavefoundthatAβdepositionandplaqueburdeninAD-modeltransgenicmiceisdecreasedfollowingtreatmentwithcurcumin( ReferenceGarcia-Alloza,BorrelliandRozkalne 40 , ReferenceYang,LimandBegum 60 , ReferenceLim,ChuandYang 101 , ReferenceWang,ThomasandZhong 102 ).CurcuminhasalsobeenfoundtoinhibitAβ-inducedtauphosphorylation( ReferenceMa,YangandRosario 103 ),toreducemicroglialactivation,indicatingareductionininflammation( ReferenceWang,ThomasandZhong 102 , ReferenceFrautschy,HuandKim 104 ),andreducedoxidativedamage( ReferenceFrautschy,HuandKim 104 ).OtherstudiesoftransgenicmousemodelsofADhaveshownthatcurcumincanreducegenomicinstabilityevents( ReferenceFenechandThomas 105 ). InthestudybyLimetal. ( ReferenceLim,ChuandYang 101 ),AD-modelTg2576miceaged10monthsoldwerefedacurcumindiet(160partspermillion(ppm))for6months.Theresultsshowedthatthecurcumindietsignificantlyloweredthelevelsofoxidisedproteins,theinflammatorycytokine,IL-1β,theastrocytemarkerglialfibrillaryacidicprotein(GFAP),solubleandinsolubleAβandalsoplaqueburden.ThestudyfoundthatthereductioninGFAPwaslocalised,suchthatincreasedactivitywasshowninareasaroundplaques,demonstratingastimulatoryeffectofcurcuminonthephagocytosisofplaquesbymicroglia.Frautschyetal. ( ReferenceFrautschy,HuandKim 104 ),usingSprague–DawleyratsinfusedwithAβ40andAβ42toinduceneurodegenerationandAβdeposits,foundthatdietarycurcumin(2000ppm(5·43μmol/g))suppressedAβ-inducedoxidativedamageandmemoryimpairment,andincreasedmicrogliallabellingwithinareasadjacenttoAβdeposits.Theyalsofoundthatcurcuminreversedchangesinsynaptophysinandpost-synapticdensity95(PSD-95)levels,associatedwithbrainplasticity,aswellasimprovedratperformanceinlengthandlatencywithinthewatermazetest( ReferenceFrautschy,HuandKim 104 ).InsimilarstudiesofagedTg2576AD-modelmicebyYangetal. ( ReferenceYang,LimandBegum 60 ),itwasdemonstratedthatcurcumininjectedperipherally(viathecarotidartery)cancrosstheBBBandbindtoamyloidplaquesandinhibittheformationofAβoligomersandfibrils( ReferenceYang,LimandBegum 60 ).Later,Begumetal.( ReferenceBegum,JonesandLim 15 )showedsimilarresultsandsuggestedthatthedienonebridgepresentinthechemicalstructureofcurcuminisnecessaryforthisreductioninplaquedepositionandthelowerproteinoxidationobservedinthecurcumin-treatedTg2576mice. Morerecently,Belviranlietal.( ReferenceBelviranli,OkudanandAtalik 106 )showedthatagedfemaleratssupplementedwithcurcuminfor12ddemonstratedimprovedspatialmemory(Morriswatermazetest),andtheirbrainsexhibitedreducedoxidativedamage.InotherstudiesusinganAβ-infusedmaleSprague–DawleyratmodelofAD,theeffectsofcombinedcurcuminoids,aswellastheindividualcurcuminconstituents,wereexaminedinrelationtogenesrelatedtosynapticplasticity.Thegenesthatwereinvestigatedincludedactin,Ca/calmodulin-dependentproteinkinasetypeIV,PSD-95andsynaptophysin,andsignificanteffectswerenoted;forexample,asignificantincreaseinsynaptophysinexpressionwasfoundfollowingtreatmentofthehippocampuswithcurcuminoids,andbothDMCandcurcuminwerefoundtoincreasePSD-95expressionseveral-fold( ReferenceAhmed,EnamandGilani 107 ),demonstratingresultssimilartotheearlierratstudycarriedoutbyFrautschyetal.( ReferenceFrautschy,HuandKim 104 ). Curcuminandneurogenesis Curcuminhasalsobeenfoundtostimulateproliferationofembryonicneuralprogenitorcellsandneurogenesisintheadulthippocampus,demonstratingotherpotentiallybeneficialeffectsonneuroplasticity( ReferenceKim,SonandPark 108 ).Inthisstudy,intraperitoneallyadministeredcurcuminactivatedextracellularsignal-regulatedkinases(ERK)andp38kinases,whichfunctionincellularsignaltransductionpathwaysthatareknowntobeinvolvedintheregulationofneuronalplasticityandstressresponses.Morerecently,ahybridcompoundofcurcuminandmelatonin(5-(4-hydroxy-phenyl)-3-oxo-pentanoicacid(2-(5-methoxy-1H-indol-3-yl)-ethyl)-amide),knownasZ-CM-I-1,developedwiththeaimofimprovingneuroprotectivepropertiesandBBBpermeability,wasfoundtoreduceAβaccumulationinthehippocampusandcortexofAPP/PS1transgenicmice,andtoincreasetheexpressionofthesynapticmarkerssynaptophysinandPSD-95,followingoraladministrationatadoseof50mg/kgfor3months( ReferenceGerenu,LiuandChojnacki 109 ),encouragingfurtherdevelopmentofthishybridcompound.APP/PS1micewerealsousedinanotherrecentstudy,whichtestedtheeffectof6months’dietarysupplementationwiththecurcuminderivative1,7-bis(4'-hydroxy-3'-trifluoromethoxyphenyl)-4-methoxycarbonylethyl-1,6-heptadiene-3,5-dione(FMeC1).ItwasfoundthatFMeC1supplementationresultedinlessAβdeposits,glialcellactivityandcognitivedeficits,whencomparedwithuntreated,curcumin-treatedorFMeC2-treatedmice,suggestingthatFMeC1haspotentialinthetreatmentofAD( ReferenceYanagisawa,IbrahimandTaguchi 110 ).Inratstudies,genetictranscriptionalresponsesalongwithenhancedhippocampalneurogenesiswasseen,following12weeksofadministrationofacurcumin-containingdiet,ascomparedwith6weeksofthisdiet,oracontroldiet( ReferenceDong,ZengandMitchell 111 ),providingfurtherevidencethatcurcuminmaybebeneficialthroughthepromotionofneuronalcellgrowth. Curcuminandtheblood–brainbarrier StudiesofratandmousemodelsofischaemicdamagefoundthatcurcumincouldprotecttheBBB,mostlikelybecauseofanti-inflammatoryandantioxidanteffects( ReferenceGhoneim,Abdel-NaimandKhalifa 112 , ReferenceThiyagarajanandSharma 113 ),andlaterstudiesofcerebralischaemiainratsfoundthatasingleintravenousinjectionofcurcumincouldreduceinfarctvolumeandneurologicaldeficit,possiblybecauseofinhibitionofinduciblenitricoxidesynthase( ReferenceJiang,WangandSun 114 ).Morerecentstudiessuggestthatcurcuminup-regulateshemeoxygenase-1expressiontoreducedamageandpermeabilityoftheBBB( ReferenceWang,GuandQin 115 ).Encouragingly,aninvivoratstudy,usingnanoparticulationofcurcumin,wasabletodemonstrateincreasedorgan,aswellasthebrain,perfusionbycurcumin,byprolongingretentiontimeinthehippocampusby83%andinthecerebralcortexby96%( ReferenceTsai,ChienandLin 116 ).Morerecently,anothergroupproducedahighlystablenanocurcuminformulation(particulesize<80nm)forusewithinaninvitroandinanADtransgenicmousemodel.Thestudyshowedhigherconcentrationsofthenanoformulationinplasmaandwithinthebraincomparedwithnon-capuslatedcurcuminorplacebo,whiledemonstratingsignificantimprovementsinworkingandcuedmemoryfunction( ReferenceCheng,YeungandHo 117 ). Curcuminanalogueswithsimilarbiologicalactivitytocurcumin,yetwithimprovedpharmacokineticcharacteristics,includingincreasedbioavailabilityandwatersolubility,arecontinuingtobedeveloped( ReferenceAnand,NairandSung 118 , ReferenceZonaandLaFerla 119 ),whilenewsyntheticproductsarealsoemerging( ReferenceZonaandLaFerla 119 ).Nanotechnologyisparticularlypromising,wherebynanoencapsulationmaybeabletoachieveasynergisticdrugdeliverysystem( ReferenceRe,GregoriandMasserini 120 ).Encouragingresultshavealreadybeenreportedinastudyexaminingcurcuminforuseinbreastcancerchemoprevention,whichusedinjectablepolymericmicroparticlesinmice,achievingbothsustainedbloodcurcuminlevelsforalmostamonthwhilemaximisingitsBBBpenetration,aswellasinhibitingtumourvasculature( ReferenceShahani,SwaminathanandFreeman 121 ).Otherstudiesexploringnanoparticletechnology( ReferenceChiu,LuiandMajeed 122 , ReferenceShaikh,AnkolaandBeniwal 123 )havebeenequallypromising.Forexample,followingtheintravenousadministrationofliposomalcurcumin,polymericnanocurcuminandpoly-lactic-co-glycolicacidco-polymer-curcumininrats,allofthesecompoundswerefoundtocrosstheBBB( ReferenceChiu,LuiandMajeed 122 ),whereasinanotherstudynanoparticlescontainingcurcuminwereshowntoincreaseoralbioavailability9-fold( ReferenceShaikh,AnkolaandBeniwal 123 ).FurtherevidenceofBBBpenetrationhasbeenobtainedinanimalmodelsusinglabelledcurcuminderivatives( ReferenceZonaandLaFerla 119 ). Curcuminandacetylcholinesterase Inadditiontotheeffectsabove,curcuminhasalsobeenshowntoinfluenceacetylcholinesteraseactivities( ReferenceAhmedandGilani 124 ),followingthesamepathwayasthecommonlyprescribedpharmaceuticals,acetylcholinesteraseinhibitors,whichareconsideredfirst-linemanagementinAD( ReferenceHamaguchi,OnoandYamada 18 , ReferenceGauthierandMolinuevo 125 ).TheadministrationofacetylcholinesteraseinhibitorshasbeenfoundincertaincircumstancestoslowtheprogressionofADsymptomsorevenreduceADsymptomsfora12-monthperiod,byinhibitingthebreakdownofacetylcholine,amajorneurotransmitter,depletedintheADbrain.Usinginvitroandexvivomodelsofacetylcholinesteraseactivity,Ahmedetal. ( ReferenceAhmed,EnamandGilani 107 )investigatedwhethercurcuminhadaninfluenceonacetylcholinesterasemechanisms,andrecordeddose-dependentinhibitoryeffectsinthefrontalcortexandinthehippocampaltissue;curcuminoidsalsodemonstratedsignificantattenuationofscopolamine-inducedamnesia.Furthermore,Ahmedetal.( ReferenceAhmed,EnamandGilani 107 )examinedtheinfluenceofcurcuminonspatialmemoryinamyloid-infusedADratmodels,reportingincreasedPSD-95andsynaptophysinexpressioninthehippocampusandamemory-enhancingeffect.Instudiesofstreptozotocin-induceddiabeticrats,curcuminhasbeenshowntopreventcholinergic-mediatedcorticaldysfunctions,whichareinducedbydiabetes( ReferencePeeyush,AntonyandSonan 126 ),andinmicetreatedwithokadaicacidtoinducememoryimpairmentorallyadministeredcurcuminhasbeenfoundtoimprovecholinergicfunctionandreduceinflammation,amongotherbeneficialeffects( ReferenceRajasekar,DwivediandTota 127 ).Furthermore,curcuminhasbeenshowntoreversealcohol-inducedcognitivedeficitsintheadultratbrain,partlybypreventingthealcohol-inducedactivationofacetylcholinesterase;curcuminalsoreducessignsofneuroinflammationintheserats( ReferenceTiwariandChopra 128 ).AnotherratstudyindicatedthatcurcuminmayinhibitacetylcholinesteraseactivityinAs-andAl-inducedtoxicitymodels( ReferenceOrhan 129 ). Despitealltheseanimalstudies,theinfluenceofcurcuminonacetylcholinesterasehasnotyetbeeninvestigatedinhumanclinicalstudies.Furthermore,mechanismsunderlyingmanyoftheeffectsdescribedabovearestillbeingcharacterised.However,thereisnowevidenceofcurcuminderivativesinfluencingproteasomalfunctionandAβdegradation,asdescribedbelow. Curcumin,proteasomefunctionandβamyloiddegradation Proteasomalactivityanditsroleinthedegradationofmostoxidisedproteinsislinkedwiththeprocessesofcellageing;itisalsobelievedthatage-relateddecreasesinproteasomeactivityweakensacell’scapacitytoremoveoxidativelymodifiedproteinsandthereforeencouragesthedevelopmentofdiseases( ReferenceBulteau,MoreauandSaunois 130 ).Curcuminhasbeendemonstratedtohaveastimulatoryeffectonproteasomalactivity,causinga46%increaseinactivityatdosesof1µm invitro,whereashigherdoses,notlikelytobeachievedinvivo,ledtodecreasedactivity( ReferenceCole,TeterandFrautschy 131 ).Morerecentstudieshaveshownthatasyntheticderivativeofcurcumin,CNB-001,canstimulateAβdegradationthroughbothproteasomesandlysosomes,andtheexperimentalinhibitionoftheproteasomepathwayredirectsclearancethroughlysosomes.OtherrecentCNB-001studieshaveprovidedalinkbetweenthefindingsofseveralotherAD-relatedbiochemicalchanges.Theseincludethefindingsthatlevelsoftheenzyme5-lipoxygenase(5-LOX)areelevatedinAD( ReferenceIkonomovic,AbrahamsonandUz 132 )andthatdisruptionofthisenzymeandsomephospholipasescanreduceADpathology( ReferenceQu,UzandManev 133 , ReferenceFiruzi,ZhuoandChinnici 134 );aswellasthatchronicstresscancausecellsignalling/over-activationofregulatorykinases,whichinturnleadstothephosphorylationoftheeukaryoticinitiationfactor-2α(eIF2α)anddisruptsthetranslationactivationofseveralmRNA,anddetectedinneurodegenerativediseasesincludingAD( ReferenceOhno 135 ).TheCNB-001studiesfoundthatCNB-001couldinhibit5-LOX,whichinducestheeIF2αphosphorylation.Furthermore,whenfedtoADtransgenicmice,CNB-001wasfoundtoincreaseeIF2αphosphorylation(aswellasheatshockprotein90andactivatingtranscriptionfactor4levels),improveAβclearanceandthereforelimittheaccumulationofsolubleAβandubiquitinatedaggregatedproteins.CNB-001hasalsobeenfoundtomaintaintheexpressionofsynapse-associatedproteinsandtoimprovememoryinthemice( ReferenceValera,DarguschandMaher 136 ).Thesestudiesindicatethatthecurcuminoidderivative’sinhibitionof5-LOXhaspotentialasatherapeuticapproach. Overall,cellcultureandanimalstudieshaveindicatedthatcurcuminhasconsiderablepotentialasaninhibitorofAβaggregation,asanantioxidant,ananti-inflammatoryandasaninhibitorofBACE1.Curcumin,amongitsmodalitiesofaction,hasalsoshownpromiseinfacilitatingAβclearance/degradation,inhibitingtauphosphorylation,promotingneurogenesisandmodulatingsynapticplasticity(Fig.1).Despitethesebenefits,thereisapaucityofpopulation-basedstudiesexaminingtheprotectiveroleofcurcuminoncognition. Fig.1 Curcumin:reportedmechanismsofaction.BACE1,β-APP-cleavingenzyme-1;Aβ,βamyloid;APP,amyloidprecursorprotein. Effectsofcurcuminonhumancognition OnlyahandfulofclinicalstudieshavebeencarriedouttoevaluatethecognitiveenhancingpotentialofcurcumininADpatients( ReferenceBaum,LamandCheung 137 , ReferenceRingman,FrautschyandCole 138 );however,thesehavenotbeenparticularlysuccessful.Reasonscouldbebecauseofthelowbioavailabilityofcurcumin( ReferenceBegum,JonesandLim 15 ),therebymarkedlyreducingitspotentialtoreachthebrainatsufficientconcentrationstoprovidebenefits.Alternatively,thesubjectsmayhavebeentreatedatastageofpathologythatistooadvancedforcurcumintoprovidebenefits.Nevertheless,thereareepidemiologicaldatathatsupporttheconceptthatcurcumincanreducetheriskofAD.Forexample,India,withanestimatedaveragedailyconsumptionofcurcuminbeing80–200mg( ReferenceBasnetandSkalko-Basnet 21 , ReferenceCommandeurandVermeulen 139 ),hasbeenreportedtohavealowerincidenceandprevalenceofAD( ReferenceGanguli,ChandraandKamboh 140 – ReferenceShaji,BoseandVerghese 142 ),althoughunder-reportingandclinicianaccessmaybeacontributor.Nevertheless,astudyof1010cognitivelyintactAsianparticipantsaged60–93yearshasfoundthatthosewhoconsumedcurry(whichcontainsturmeric)moreoften,comparedwiththosewhoatecurryveryrarelyornever,performedbetterontheMiniMentalStateExamination(MMSE)( ReferenceNg,ChiamandLee 143 ).Theseobservations,amongothers,supporttheconceptthatturmeric,andinparticularitscurcuminparticle,maypossessvaluableneuroprotectiveorcognitive-enhancingproperties.However,asmentionedabove,clinicaltrialsexaminingtheefficacyofcurcumininpatientswithcognitivedeclinehavebeendisappointing;however,morerecently,withstudiesusingimprovedformulationsandmoreappropriatecohorts,encouragingsignsareemerging( ReferenceCox,PipingasandScholey 144 ).Table1representsalistofongoing/completedclinicaltrialsthathaveusedcurcuminforthediagnosis,preventionortreatmentofAD.Thesetrialsarediscussedfurtherbelow. Table1StudiesusingcurcumininAlzheimer’sdisease(AD):diagnosis,preventionandtreatment Aβ,βamyloid;MMSE,MiniMentalStateExamination;PET,positronemissiontomography;FDG,fluorodeoxyglucose;MCI,mildcognitiveimpairment;NPIQ,Neuro-PsychiatricInventory-BriefQuestionnaire;fMRI,functionalMRI. Baumetal.( ReferenceBaum,LamandCheung 137 )randomisedADpatients(n34)toreceive1g(plus3gplacebo),4g(plus3gplacebo)or0goforalcurcumin(plus4gofplacebo),oncedaily.Participantsweregiventhechoiceofformulation,beingeitherpowderorcapsule.TheinterventiongroupdidnotdemonstratesignificantdifferencesinMMSEscoresorplasmaAβ-40levelsbetween0and6months;however,itwassuggestedthattheoutcomemeasureswerenotsensitiveorspecificenoughtodemonstrateeffects( ReferenceBaum,LamandCheung 137 ).Ringmanetal.( ReferenceRingman,FrautschyandTeng 145 )conducteda24-week,randomised,double-blind,placebo-controlledstudyevaluatingtheefficacyoftwodosagesofcurcumin(2and4g/d)inpatientswithmild-to-moderateAD,withanopen-labelextensionfor48weeks.Thiswasthefirststudytoincludemeasurementofcerebrospinalfluid(CSF)biomarkers.Thepreliminaryresultsshowednosignificantdifferencesincognitivefunction,inplasmaorCSFAβ-40/Aβ-42ortau,betweenplaceboandinterventiongroups;however,bioavailabilitywasagainreportedasalimitation,althoughthedosingwaswelltolerated. TheabovestudiesincludedAD-diagnosedparticipants,inwhomsignificantneurodegenerationandADpathologyalreadyexists.Giventhatthepathologicalchangesbegintwodecadesormorebeforethefirstrecognisablesymptoms( ReferenceVillemagneandRowe 45 ),targetinghealthyoldercohortsorthoseinthepre-clinicalorprodromalADphasewouldmorelikelyprovidebenefitsthroughslowingthepathogenicmechanisms.Considerablesynapticandneuronallosshasalreadyoccurredbythetimesymptomsappear,andtheantioxidant,anti-inflammatoryandAβ-loweringandanti-Aβaggregationpropertiesofcurcuminaremostlikelytobeofbenefitintheearlystages,forthepreventionofADpathogenesis.However,curcumintreatmentofADpatientsmaystillprovidemanybenefits,anditwarrantsfurtherclinicalevaluation. Morerecentstudieshaveevaluatedcurcumin’seffectsundernormalphysiologicalconditions.Inaplacebo-controlledstudytargetinghealthymiddle-agedsubjects(n38,40–60years),80mgofcurcumin(400mgofLongvida-optimisedcurcumin)wasgivenorallyfor4weekstoassessthehealth-promotingeffectsofcurcumin( ReferenceDiSilvestro,JosephandZhao 146 ).Thisstudy,becauseofthediversehealthclaimsofcurcumin,investigatedseveralbloodandsalivabiomarkers,toexaminetheeffectofcurcuminonmarkersassociatedwithlipids,inflammation,liverfunction,immunityandstress,aswellasAβlevels.Cognitivemeasureswerenotincludedintheirstudydesign.Statisticallysignificantresultswereshownforanumberofthesemarkersincludingincreasedcatalase,nitricoxideandantioxidantstatus,withloweredplasmaalanineaminotransferaseandTAG,butnottotalcholesterol.Inaddition,curcuminwasfoundtolowerplasmaAβlevels.Anotherinterestingfindingwasthatsalivaryamylasewasalsosignificantlylowered,whichisanenzymeassociatedwithadrenergicactivityduringstress( ReferencevanStegerena,RohlederbandEveraerda 147 ). Anumberofstudiesofcurcuminsupplementationinhealthyoldersubjectsarestillinprogress.However,onesuchstudyhasbeencompleted:arandomised,double-blindplacebo-controlledstudy(n60,60–85years)usingthesame80mg/dcurcuminformulationasusedbyDiSilvestroetal. ( ReferenceDiSilvestro,JosephandZhao 146 )(400mgofLongvida-optimisedcurcumin).Theauthorsreportedacute(1hpostdose)andchronic(1-monthduration)effectsofcurcuminintakeoncognition,moodandbloodbiomarkers( ReferenceCox,PipingasandScholey 144 ).Benefitsonattentionandworkingmemorywerereportedfollowingtheacuteadministrationofcurcumin,whereasatthe1-monthtimepoint,workingmemoryandmoodimproved.Alertnessandcontentednessalsoimprovedafteracute-on-chronictreatment. Althoughtheresultsaboveareencouraging,alternatemechanisms,includingmodulationofthestressresponse,mayhaveplayedapart.Amylase,showntobeloweredinanearlierstudyusingcurcumin( ReferenceDiSilvestro,JosephandZhao 146 ),isarecognisedbiomarkerofβ-adrenergicstimulation( ReferencevanStegerena,RohlederbandEveraerda 147 – ReferenceChatterton,VogelsongandLu 149 ),andimprovedattention,workingmemoryandcontentednessmaybelinkedtothismodeofaction.NoalterationsinbloodlevelsofAβ-40orAβ-42levelsweredetected,althoughthesearenotthoughttobereliablebiomarkersontheirown.Differencesincognitiveperformance,asdemonstratedinserial7-sanddelayedrecall,werenotsignificant( ReferenceCox,PipingasandScholey 144 ).Nevertheless,curcumindidenhancethelipidprofilebyloweringLDL,andincontrasttotheresultsfoundbyDiSilvestroetal. ( ReferenceDiSilvestro,JosephandZhao 146 ),Coxetal.( ReferenceCox,PipingasandScholey 144 )alsorecordedareductioninplasmatotalcholesterol.Long-termlipidchangessuchasthesemayhavesomeeffectonADrisk:asmentionedearlier,chronicconditionslinkedtoabnormallipidprofilessuchasobesityanddiabetesarelinkedwithahigherriskofAD.Interestingly,acasestudyreportedbyHishikawaetal.( ReferenceHishikawa,TakahashiandAmakusa 150 )foundthatthreesevere-stageADpatientstreatedwith100mg/doralcurcuminfor12weeks(inadditiontotheiralreadyprescribedacetylcholinesteraseinhibitor,donepezil)showedareductioninagitation,anxietyandirritability;onepatientalsoshowedimprovementinMMSEscore.Thismaysuggestaroleforcurcuminasaconcurrentintervention,anditsupportstheconceptthatcurcuminmayprovidebenefits,eveninadvancedstagesofAD;however,furtherresearchwouldberequiredtosupportthesesuggestions. Asmentionedearlier,severalotherclinicalstudiesarestillunderway,orresultshavenotyetbeenpublished;thus,withsofewclinicalstudieshavingbeencompleted,itisnotpossibletomakeanyconclusionsconcerningtheclinicalsignificanceofcurcumininenhancingcognition. Epigenetics,Alzheimer’sdiseaseandcurcumin EpigeneticalterationshavebeenreportedtooccurinAD( ReferenceMastroeni,GroverandDelvaux 151 – ReferenceChouliaras,RuttenandKenis 154 ).Asepigeneticalterationsaredynamic,thesealterationshavebeenproposedasatargetareaforADprevention.EpigeneticalterationsincludechangesinDNAmethylation,histonemodificationsorchangesinmiRNAexpression.Studiesincludingsomeclinicalstudiesofotherconditionshaveshownthatcurcuminhasthepotentialtoinduceepigeneticchanges( ReferenceTeiten,DicatoandDiederich 155 , ReferenceReuter,GuptaandPark 156 ).Forexample,epigeneticeffectsofcurcuminhavebeenshowninpatientswithbreastcancerandadvancedpancreaticcancer,andalsoinpeopleatriskofstroke,byprovidingvascularprotection( ReferenceDu,XieandWu 157 ).CurcuminhasbeenshowntoinhibitDNAmethyltransferase,histoneacetyltransferaseandhistonedeacetylase,andtomodulatemiRNA,forexampledown-regulatingmicroRNA-134andmicroRNA-124inculturedhippocampalslices,whichareassociatedwithanincreaseinthebrain-derivedneurotropicfactor(BDNF)( ReferenceSezginandDincer 158 ).BDNFhasbeenshowntoincreasehippocampalneuronalsurvivalandtoenhancesynapticplasticity.Furthermore,variantsoftheBDNFgenehavebeenlinkedtoseveralmentaldisorderssuchasmajordepressivedisorder(MDD)andschizophrenia,andlowlevelsofBDNFproteinarethoughttocontributetothepathologyofMDD.Interestingly,antidepressantshavealsobeenfoundtoincreasebloodlevelsofBDNF( ReferenceLi,XuandGao 159 ).DepressionisamajorriskfactorforAD,andthusthisBDNF-modifyingpropertyofcurcuminisofsignificantinterest.Otherrecentstudieshavealsofoundthatcurcumincanhaveasignificanteffectondepression( ReferenceLopresti,MaesandMarker 160 ),supportedtosomeextentbythestudiesdescribedabovebyCoxetal. ( ReferenceCox,PipingasandScholey 144 ) Manyotherstudieshavediscoveredthebeneficialepigeneticeffectsofcurcumininrelationtovariouscancersandrheumatoidarthritis,andnowsimilarbenefitsarebeingdiscoveredthatmayhaveanimpactontheriskandseverityofAD( ReferenceDavinelli,CalabreseandZella 161 ).Forexample,DNAmethylationinneurodegenerativediseases(andmanyotherconditionssuchasCVDandstroke)hasbeenlinkedtohighhomocysteinelevels,whichoccurwithageingandwithvitaminB12orfolatedeficiencies( ReferenceAnsari,MahtaandMallack 162 , ReferenceMattsonandShea 163 ).ChronicallyhighhomocysteinelevelsleadtoanabnormallyhighDNAmethylation( ReferenceFux,KloorandHermes 164 ),whichrequiresDNAmethyltransferase,andasmentionedabovecurcumininhibitsDNAmethyltransferase.However,ratstudiesofhomocysteineeffectssuggestthatcurcuminmaybeneuroprotective,andmayimprovelearningandmemorydeficits,byreducinglipidperoxidationandhighmalondialdehydelevels,bothofwhichareinducedbyhighhomocysteinelevels( ReferenceAtaie,SabetkasaeiandHaghparast 165 ).Therelativesignificanceofthesepotentialbenefitsofcurcumindietarysupplementationareclearlystillnotknown,andthusfurtherclinicalstudiesarerequiredtoevaluatetheneuroprotectiveroleofcurcumininducedbyepigeneticregulationforthepreventionofcognitivedecline. Curcuminsafetyprofile,tolerability,bioavailabilityandmodeofadministration Ascurcuminisacomponentofthespiceturmeric,itisnotsurprisingthatcurcuminhasbeenreportedtobeaverysafenutraceuticalwithalowside-effectprofile.However,itshouldbenotedthatwhilecurcuminhasbeenreportedtobesafeandwelltoleratedatdosesofupto8g/d( ReferenceCheng,HsuandLin 166 ),studieshavenotgonebeyond3months,andthusthelong-termeffectsofhighdosesofcurcuminarenotknown.Inaddition,withenhancedbioavailabilityandabsorptionnowpossiblewithnewformulations,theriskofincreasedtoxicityishigher,particularlyforpopulationstakingmedicationsmetabolisedbytheliverorforthosewithexistingliverimpairment( ReferenceBaum,LamandCheung 137 ).Nevertheless,althoughcurcuminmaynothavebeentestedwidelyforthepurposesofreducingneurodegeneration,ithasbeenclinicallytestedinpatientswithvariousconditionsandpro-inflammatorydiseasesincludingcancer,CVD,arthritis,Crohn’sdisease,ulcerativecolitis,irritableboweldisease,tropicalpancreatitis,pepticulcer,psoriasis,atherosclerosis,diabetes,diabeticnephropathyandrenalconditions,amongothers,andhasresultedinminimalsideeffectsandmanyhealthbenefits.Curcuminhasalsoprovidedprotectionagainsthepaticconditions,chronicarsenicexposureandalcoholintoxication( ReferenceGupta,KismaliandAggarwal 167 ). Curcumin’spleiotropiceffectsexplainitswidevarietyofapplications;forexample,ithasbeentestedforthepurposeofstentcoating,ascurcuminhasadvantageousanti-coagulantproperties( ReferencePan,TangandWeng 168 ).Inaddition,itcaninhibitthegenerationofbloodclottingfactorsXaandthrombinviatheextrinsicandintrinsicpathways( ReferenceDong-Chan,Sae-KwangandJong-Sup 169 ).Thesepropertiesdoindicatethatoneshouldbecautiouswhenprescribingcurcuminincombinationwithotherblood-thinningpreparations.Althoughthesafetyofcurcuminhasbeendemonstrated( ReferenceBaum,LamandCheung 137 , ReferenceRingman,FrautschyandTeng 145 ),inhumans,oralingestionofexistingformulationshaspresentedchallengesconcerningabsorptionandbioavailability( ReferenceRingman,FrautschyandTeng 145 , ReferenceBelkacemi,DogguiandDao 170 ).Theliteraturereportsthatoralcurcuminhasefficientfirst-passmetabolismandsomedegreeofintestinalmetabolism,includingglucuronidationandsulphation(althoughthisoccursmostlyintheliver);however,itisexcretedlargelyunconjugatedviatheintestine.CurcuminisalsounstableatneutralandalkalinepH.Thereappearstobeminimaldistributionofcurcumintotheliverorothertissuesbeyondthegastrointestinaltract( ReferenceSharma,StewardandGescher 171 ).Forexample,inratstudies,anoraldoseof500mg/kgresultedinapeakplasmaconcentrationofonly1·8ng/ml( ReferenceIreson,OrrandJones 172 ),withthemajormetabolitesbeingcurcuminsulphateandcurcuminglucuronide,whereasaclinicalstudyfoundthatoraldosesof4,6and8gofcurcumindailyfor3monthsyieldedserumcurcuminconcentrationsofonly0·51(sd0·11),0·63(sd0·06)and1·77(sd1·87)μm,respectively,withpeaklevelsat1–2hpostdosing( ReferenceCheng,HsuandLin 166 ).Unmodifiedcurcuminisreportedtoberetainedinthebloodfor2–5hinhumans,whereasretentionofamodifiedformofcurcumin–Biocurcumax-95(BCM-95)–isreportedasexceeding8h( ReferenceBennyandAnthony 173 ).Inorderforthecurcumintoelicitagreaternutraceuticalbenefit,itiscriticalthatmoreofitisabletoenterthebloodstream,itmusthavealongerhalf-lifeandalsocrosstheBBBtobeofsignificantbenefitinAD. Todate,mosthumancurcuminstudieshaveusedoralformulations.Absorptionandbioavailabilityhavecontinuedtobeahindrance,notaidedbythevariationofformulationsavailable.However,astechnologyhasadvancedandnewdeliveryapproacheshaveemerged,theuseofadjuvanttherapies,isomerisation,liposomes,micelles,phospholipidsandnanotechnologyalsoincrease.OneofthepotentialtherapeuticresultsofincreasingbloodlevelsofcurcumininhumanscanhopefullybeanticipatedfromADtransgenicmousestudies,inwhichtheintravenousadministrationofcurcumin(7·7mg/kgperd)for7dresultedinsignificantclearanceofcerebralAβload( ReferenceGarcia-Alloza,BorrelliandRozkalne 40 ).Alternateroutesofdeliveringcurcuminarealreadybeingusedforotherdisorders,suchastheuseoftopicaleyedrops,recommendedforthetreatmentofavarietyofophthalmicdisorders( ReferencePescosolido,GiannottiandPlateroti 174 ),andtransdermalapplicationusingencapsulatedcurcuminasananoemulsion,forthetreatmentofarthritis( ReferenceRachmawati,BudiputraandMauludin 175 ).Recently,thecurcuminderivativeFMeC1,originallyproducedasanMRIprobe,hasbeenproducedinaerosolformforinhalation.Astudyin5XFADtransgenicmicesuggestedimproveddistributioninthebrain,andimmunohistochemicalstudiesdemonstratedthatFMeC1absorbedfollowingaerosoldeliverydidbindtoamyloidplaquesinthemousebrains( ReferenceMcClure,YanagisawaandStec 176 ).ThistechniquemayalsobeusefulforAβimagingstudies;however,furtherstudiesareneededtovalidatethisnotion.Theabsorptionandbioavailabilityofcurcuminishighlyrelevant,andtheformulation,doseandmodeofdeliveryareeachimportantfactors.Multipleover-the-counterbrandsareavailable,andmostofthemclaimincreasedbioavailabilitycomparedwithunformulatedcurcumin;however,independentcomparativeanalysisisessential.TwoformulationsBCM-95( ReferenceAntony,MerinaandIyer 177 , ReferenceMerinaandAntony 178 )andLongvida( ReferenceRingman,FrautschyandTeng 145 )currentlyhavethestrongestindependentdataavailableinhumantrials.Forareviewofthemolecularstructureofcurcuminanditsderivatives,FMeC1andFMeC2,seeYanagisawaetal.( ReferenceYanagisawa,IbrahimandTaguchi 110 ),anddifferencesbetweenthepropertiesofCNB-001canbeexaminedaspreviouslypublished( ReferenceJayaraj,ElangovanandDhanalakshmi 179 – ReferenceLiu,DarguschandMaher 181 ). Tosummarise,curcuminhasbeentrialledatdosesashighas8g/d,andfoundtobewelltoleratedandsafe.However,asnewformulationsareemergingthatareshowingpromiseofincreasingbioavailability,BBBpermeabilityandlongerhalf-lives,theseformulationsalsoneedtobeevaluatedinfuturesafetyandtolerabilitytrials.Furthermore,asanycurcumintherapyislikelytobelong-terminnature,muchlongertreatmenttimesneedtobetrialled.Theanimalandclinicalstudiesthathaveinvestigatedtheroleofcurcuminhaveappliedavarietyofadministrationmodes,includingoral,subcutaneous,intraperitoneal,intravenous,topicalandthenasalroute( ReferencePrasad,TyagiandAggarwal 182 ).Humantrialsinvestigatingcurcumin’sneuroprotectivemechanismshavemostlyusedtheoralroute;however,futurestudiesshouldexploreotherroutesofadministration. Curcuminasafluorochrome/radioligandinAlzheimer’sdiseasediagnosis Turmerichasbeenusedasacolouringagentsinceancienttimes.In1989,Stockertetal.( ReferenceStockert,DelCastilloandGomez 183 )identifiedcurcuminasapotentialfluorochrome,ascurcuminwasfoundtofluoresceyellow/greenunderaviolet/blue(436nm)light,anditwasnotedtobindtoDNAandchromosomes,astreatmentoftissuesamplesandcellsampleswithdeoxyribonucleaseorTCApreventedthechromatinstaining.Morerecently,theseinnatefluorescentqualities(curcuminabsorbslightatabout420nmandemitsfluorescenceatabout530nminaqueoussolutions( ReferenceWang,WuandWang 184 )),andcurcumin’snaturalaffinitytobindwithAβ,promptedcurcumintobetestedasasafeplaque-labellingfluorochrome.AmousestudyinvestigatednovelderivativesofcurcuminandmeasuredtheirbindingaffinitiesforAβaggregates( ReferenceRyu,ChoeandLee 185 ).Thederivativewiththehighestaffinitywasthen(18F)-radiolabelledfortestingasaradioligandprobeforAβplaqueimaging;thecompoundalsohadsuitablelipophilicity,goodbrainuptakeandwasmetabolicallystableinthebrain.InanotherstudyconductedontransgenicADmice,multiphotonmicroscopywasusedtodemonstratethatcurcumincrossedtheBBBandlabelledAβplaquesandcerebrovascularamyloidangiopathy( ReferenceGarcia-Alloza,BorrelliandRozkalne 40 ).CurcuminhassincebeenusedinthelabellingofneuronalfibrillartauinclusionsinhumanbrainsamplesofADandprogressivesupranuclearpalsy( ReferenceMohorko,RepovšandPopovic 186 ).Morerecently,otherstudiesofAβimagingusedan19F-containingcurcuminderivativeinjectedperipherallyinAD-modelmicetodetectAβplaquesinthebrains,usingMRI( ReferenceYanagisawa,IbrahimandTaguchi 110 ).Furthermore,Koronyo-Hamaouietal.( ReferenceKoronyo-Hamaoui,KoronyoandLjubimov 187 )demonstratedcurcumin’svalueasastainingagentforAβbydetectingplaquesinhumanpostmortemretinaltissue,andalsoasabrainandretinalAβplaquetraceradministeredintravenouslyintransgenicmice.Importantly,thepathologyintheretinawasdetectedbeforethestageatwhichpathologyinthebraincouldbedetected,indicatingthatcurcuminmayhavepotentialasapre-clinicalADbiomarker.TheresearchalsosupportsthepreviousobservationthatcurcuminhastheabilitytocrosstheBBB,whichisessentialforitstherapeuticefficacy.Preliminarydatafromapilotstudy(n40)conductedbyourgroupundertakingretinalimagingusingcurcuminasafluorochromehada100%sensitivityand80·6%specificityforADdiagnosis( ReferenceFrost,KanagasingamandMacaulay 3 ).Anotherstudyrecruitedmildcognitiveimpairment(MCI)patients(n30)andadministered80mgofcurcumin(Meriva)twicedailyfor3dandfoundabnormaldepositsindifferentretinallayersbelievedtoberelatedtoneurodegeneration( ReferenceKayabasi,SergottandRispoli 188 ).Thestudyreportedthatcurcumincausedpatchyhypofluorescentspots;however,itdidnotquantifytheretinalamyloidplaques.Thefindingswereprimarilybasedonthedirectperceptionofthedepositsviaocularimaging.RecentstudieshaveagainusedMRI,thistimetodetectmagneticnanoparticlesmadeofsuperparamagneticironoxideconjugatedwithcurcumin,whichwerefoundtobindtoAβaggregatesinexvivoAD-modelmousebrains,afterinjectionwiththecurcuminconjugate( ReferenceCheng,ChanandFan 189 ).Otherrecentstudieshaveproducedanovelnanoimagingagent:poly(β-l-malicacid)containingcovalentlyattached(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaceticacid)gadoliniumandcurcumin.Theall-in-oneagentselectivelybindstoAβplaquesandcanbedetectedbyMRI( ReferencePatil,GangalumandWagner 190 ),thusprovidinganotherpromisingAβplaqueimagingagent. Curcumin,beingnon-toxic,accessibleandeconomical,thusbecomeshighlyattractiveforbothdiagnosticsandtherapeuticresearch.Asdiscussedabove,retinalimagingusingcurcuminfluorescenceiscurrentlybeingexaminedinourresearchcentreaspartoftheAustralianImaging,BiomarkersandLifestyleflagshipstudyofageing,andithasbeenfoundtobewelltoleratedbyparticipants.Thisapproach,combinedwithexaminationoftheretinalvascularfeatures( ReferenceFrost,MartinsandKanagasingam 191 ),maydeliveranoveldiagnostictoolthatprovidesamorereliableindicationofearlyADchanges,whichiseconomical,relativelynon-invasiveandwidelyapplicable. Limitationsofcurcuminandfuturedirections Ifallthepositiveresultsobservedininvitroandinvivoanimalstudiescouldbetranslatedintohumanstudies,thesignificanceofcurcumininADpreventionandtreatmentwouldbeconsiderable.TherecentstudybyCoxetal.( ReferenceCox,PipingasandScholey 144 )providedsomeencouragingoutcomesbyinvestigatingcognitivemarkers,butonlyacutechangesinattention,workingmemoryandmoodweresignificant.Noeffectswerereportedinlong-termmemoryorexecutivefunction;however,theshortdurationofthestudymayhavebeenalimitation.TheevidencethatcurcumincaninfluenceAβaggregationandAβclearance,supportinnateimmunesystems,reduceoxidativestress,enhancecognitionandimpedetheonsetofADinhumansremainselusive.However,nottobeoverlookedistheapplicationofcurcuminasadiagnosticfluorochrome,potentiallyassistingintheearlieridentificationofpre-clinicalstagesofAD,duringretinalscanning.Theuseofcurcuminasafluorochromewithinretinalamyloidimaging,combinedwithexaminationofretinalvascularfeatures,offersanoveldiagnosticapproachtoAD.Whileretinalimagingisacknowledgedasanon-invasive,economicalandeasilytranslatedtechnology,furthervalidationisrequiredbeforeitcanbeadoptedasanearlyADmarker. Enhancedoralformulationsofcurcuminareemerging,potentiallynegatingthepriorchallengesofabsorptionandbioavailability.However,consideringthedifferencesinproductformulation,andthemultitudeofcurcuminproductsalreadyavailable,comparativeanalysiswouldbeuseful.AstheprimaryfocusofADtreatmenthasturnedtoprimaryprevention,thepointofinterventionisalsocrucial:interventionsintroducedearly(>10yearsbeforetheonsetofADclinicalsymptoms)maypresentdifficultyestablishingstatisticallysignificantchanges,whereasinterventionsintroduced1–2yearsbeforetheonsetmaybelesseffectiveorineffectiveasthediseasepathologymayalreadybetooadvanced.Preventionstudiesdesignedwithlongerdurationarehighlydesirable;however,asnutraceuticalsgenerallydonotattractcommercialopportunity,realisingthesetypeofstudieswillbedifficulttoaccomplish. Theuseofcurcuminasanadjuncttherapytocholinesteraseinhibitors,particularlyintheearlystagesofAD,offersapotentiallynewareaofresearch.Asanxietyandstressarecommonco-morbiditiesinAD,andresearchhasshowncurcumintohaveeffectintheseareas,curcuminmayofferanappealingalternativetoantidepressantandantipsychotictherapies,whilepotentiallyofferingothersynergies,includinginfluencingtheunderlyingneuropathologyandenhancingcholinergicactivity.Inrecentyears,thefocusoncurcuminasacompoundofinterestforthepreventionofADhasbeenintensifying.TheresultsofongoingclinicaltrialswillhopefullyshedmorelightonthebenefitsofcurcumininthepreventionofAD.Inlinewithcurcumin’scomplexmodesofaction,outcomemeasuresshouldbeexpandedtoincludenotjustcognitivechanges;extensivebloodbiomarkerassaysshouldalsobecarriedout,aswellasimaging(e.g.measuringcerebralamyloidloadandpotentiallyretinalmarkers)tocharacterisecurcumin’seffectsmorefullyovertime,inapre-clinicalpopulation. Conclusion Todate,ADclinicaltrialshavenotbeenabletogeneratetheanticipatedbenefitsofcurcumin;however,thishasbeenbroadlyattributedtodifficultieswithabsorption,bioavailabilityandarguablythetimingandlengthofintervention.Asreviewedinthisarticle,thereissignificantevidencethatcurcumincanactonmultiplepathwaysidentifiedinthepathogenesisofAD.Itispossible,however,thatsporadicADinhumanswiththeassociatedcerebralatrophyandneuronaldeathmaybelessresponsivetocurcuminthantheADinducedintransgenicanimalmodelsofthedisease. Asdiscussedinthisreview,increasingthebioavailability,BBBpenetrationandsustainingthehalf-lifeofcurcuminremainsamajorfocusinrelationtoitsdose–response.Toachievethesamedegreeofefficacyinhumanstudiesascomparedwithanimalstudies,closerscrutinyoftheadministrationrouteandalsoformulationarerequired,asincreasingbioavailabilityandBBBpenetrationiscritical.Researchanalysingthedifferentoralformulationsislacking,andthisisanareaforfurtherinvestigation.Furthermore,asthepre-clinicalsignsofADarepresentdecadesbeforeitsclinicalonsetandmostofthelate-stageADclinicaltrialshaverecentlyfailed,interventionmustbefocusedatpreventingordelayingADonset.Itisreasonabletoincludehealthycommunity-dwellingolderadultsandthosewithsubjectivememorycomplaints,ininterventionstudieswithcurcumin,foralongerdurationwithlongitudinalfollow-up.Last,inclusionofAD-relatedbiomarkersandneuroimagingwouldaddtotheclinicalsignificanceofcurcumin’sefficacyinthepreventionofADandassociatedcognitivedecline. Acknowledgements TheauthorsgratefullyacknowledgethecombinedsupportoftheMcCuskerAlzheimer’sResearchFoundationandtheAnglicanRetirementVillages(ARV). K.G.G.issupportedbyagrantthroughtheFoundationforAgedCare,ARV,andascholarshipfromtheCo-operativeResearchCentreforMentalHealth.R.N.M.,T.M.S.,H.R.S.,S.R.R.-S.,B.B.andG.VaresupportedbytheEdithCowanUniversityandtheMcCuskerAlzheimer’sResearchFoundation.H.R.S.hasreceivedrenumerationfromPfizerandTakeda.R.N.M.isthefounderandchiefscientificofficerofthebiotechcompany,Alzhyme.G.V.issupportedbytheCurtinUniversitySeniorResearchFellowship(CRF140196)andtheNHMRC(APP1045507). Allauthorscontributedtotheliteraturesearch,analysisofthedatapublished,manuscriptwritingandrevisionsofthearticle. Theauthorsdeclarenoconflictsofinterestarisingfromtheconclusionsofthisresearch. References 1 1. Prince,M&Jackson,J(editors)(2009)Alzheimer’sDiseaseInternational:WorldAlzheimerReport.ExecutiveSummary.London:Alzheimer’sDiseaseInternational.GoogleScholar 2 2. Lee,VM,Goedert,M&Trojanowski,JQ(2001)Neurodegenerativetauopathies.AnnuRevNeurosci 24,1121–1159.CrossRefGoogleScholarPubMed 3 3. Frost,S,Kanagasingam,Y,Macaulay,L,etal.(2014)RetinalamyloidfluorescenceimagingpredictscerebralamyloidburdenandAlzheimer’sdisease(oralpresentation).AlzheimersDement 10,234–235.CrossRefGoogleScholar 4 4. Ittner,LM&Götz,J(2011)Amyloid-βandtau–atoxicpasdedeuxinAlzheimer’sdisease.NatRevNeurosci 12,67–72.CrossRefGoogleScholar 5 5. Ittner,LM,Ke,YD,Delerue,F,etal.(2010)Dendriticfunctionoftaumediatesamyloid-betatoxicityinAlzheimer’sdiseasemousemodels.Cell 142,387–397.CrossRefGoogleScholarPubMed 6 6. Krishnaswamy,K,Verdile,G,Groth,DM,etal.(2009)ThestructureandfunctionofAlzheimer’sgammasecretaseenzymecomplex.CritRevClinLabSci 46,282–301.CrossRefGoogleScholarPubMed 7 7. Villemagne,VL,Burnham,S,Bourgeat,P,etal.(2013)Amyloidbetadeposition,neurodegeneration,andcognitivedeclineinsporadicAlzheimer’sdisease:aprospectivecohortstudy.LancetNeurol 12,357–367.CrossRefGoogleScholarPubMed 8 8. Walsh,DM&Teplow,DB(2012)Alzheimer’sdiseaseandtheamyloidbeta-protein.ProgrMolBiolTranslSci 107,101–124.CrossRefGoogleScholar 9 9. O’Malley,T,Oktaviani,N,Zhang,D,etal.(2014)Abetadimersdifferfrommonomersinstructuralpropensity,aggregationpathsandpopulationofsynaptotoxicassemblies.BiochemJ 461,413–426.CrossRefGoogleScholarPubMed 10 10. McKhann,GM,Knopman,DS,Chertkow,H,etal.(2011)ThediagnosisofdementiaduetoAlzheimer’sdisease:recommendationsfromtheNationalInstituteonAging-Alzheimer’sAssociationworkgroupsondiagnosticguidelinesforAlzheimer’sdisease.AlzheimersDement 7,263–269.CrossRefGoogleScholar 11 11. Majeed,M,Badmaev,V&Murrary,F(1996)TurmericandtheHealingCurcuminoids.NewCanaan,CT:KeatsPublishingInc.GoogleScholar 12 12. Kelloff,GJ,Crowell,JA,Steele,VE,etal.(2000)Progressincancerchemoprevention:developmentofdiet-derivedchemopreventiveagents.JNutr 130,467S–471S.GoogleScholarPubMed 13 13. Goel,A,Kunnumakkara,AB&Aggarwal,BB(2008)Curcuminas‘Curecumin’:fromkitchentoclinic.BiochemPharmacol 75,787–809.CrossRefGoogleScholar 14 14. Ammon,HP&Wahl,MA(1991)PharmacologyofCurcumalonga .PlataMed 57,107.GoogleScholarPubMed 15 15. Begum,AN,Jones,MR,Lim,GP,etal.(2008)Curcuminstructure-function,bioavailability,andefficacyinmodelsofneuroinflammationandAlzheimer’sdisease.JPharmacolExpTher 326,196–208.CrossRefGoogleScholarPubMed 16 16. Zhou,H,Beevers,CS&Huang,S(2011)Targetsofcurcumin.CurrDrugTargets 12,332–347.CrossRefGoogleScholarPubMed 17 17. Milobedeska,J,Kostanecki,V&Lampe,V(1910)Structureofcurcumin.BerichtederDeutschenChemischenGesellschaft 43,2163–2170.GoogleScholar 18 18. Hamaguchi,T,Ono,K&Yamada,M(2010)Review:curcuminandAlzheimer’sdisease.CNSNeurosciTher 16,285–297.CrossRefGoogleScholarPubMed 19 19. Agarwal,DK&Mishra,PK(2010)Curcuminanditsanalogues:potentialanticanceragents.MedResRev 30,818–860.GoogleScholar 20 20. Mishra,S&Palanivelu,K(2008)Theeffectofcurcumin(turmeric)onAlzheimer’sdisease:anoverview.AnnIndianAcadNeurol 11,13–19.CrossRefGoogleScholarPubMed 21 21. Basnet,P&Skalko-Basnet,N(2011)Curcumin:ananti-inflammatorymoleculefromacurryspiceonthepathtocancertreatment.Molecules 16,4567–4598.CrossRefGoogleScholarPubMed 22 22. Pan,MH,Lin-Shiau,SY&Lin,JK(2000)Comparativestudiesonthesuppressionofnitricoxidesynthasebycurcuminanditshydrogenatedmetabolitesthroughdown-regulationofIkappaBkinaseandNFkappaBactivationinmacrophages.BiochemPharmacol 60,1665–1676.CrossRefGoogleScholarPubMed 23 23. Xu,YX,Pindolia,KR,Janakiraman,N,etal.(1997)CurcumininhibitsIL1alphaandTNF-alphainductionofAP-1andNF-kBDNA-bindingactivityinbonemarrowstromalcells.HematopatholMolHematol 11,49–62.GoogleScholarPubMed 24 24. Zhang,C,Browne,A,Child,D,etal.(2010)Curcumindecreasesamyloid-betapeptidelevelsbyattenuatingthematurationofamyloid-betaprecursorprotein.JBiolChem 285,28472–28480.CrossRefGoogleScholarPubMed 25 25. Joe,B,Rao,UJSP&Lokesh,BR(1997)Presenceofanacidicglycoproteinintheserumofarthriticrats:modulationbycapsaicinandcurcumin.MolCellBiochem 169,125–134.CrossRefGoogleScholarPubMed 26 26. Jackson,JK,Higo,T,Hunter,WL,etal.(2006)Theantioxidantscurcuminandquercetininhibitinflammatoryprocessesassociatedwitharthritis.InflammRes 55,168–175.CrossRefGoogleScholarPubMed 27 27. Hanai,H&Sugimoto,K(2009)Curcuminhasbrightprospectsforthetreatmentofinflammatoryboweldisease.CurrPharmDes 15,2087–2094.CrossRefGoogleScholarPubMed 28 28. Kurd,SK,Smith,N,VanVoorhees,A,etal.(2008)Oralcurcumininthetreatmentofmoderatetoseverepsoriasisvulgaris:aprospectiveclinicaltrial.JAmAcadDermatol 58,625–631.CrossRefGoogleScholarPubMed 29 29. Thangapazham,RL,Sharma,A&Maheshwari,RK(2007)Beneficialroleofcurcumininskindiseases.AdvExpMedBiol 595,343–357.CrossRefGoogleScholarPubMed 30 30. Tsui,KH,Feng,TH,Lin,CM,etal.(2008)Curcuminblockstheactivationofandrogenandinterlukin-6onprostate-specificantigenexpressioninhumanprostaticcarcinomacells.JAndrol 29,661–668.CrossRefGoogleScholarPubMed 31 31. Liu,D&Chen,Z(2013)Theeffectofcurcuminonbreastcancercells.JBreastCancer 16,133–137.CrossRefGoogleScholarPubMed 32 32. Friedman,L,Lin,L,Ball,S,etal.(2009)Curcuminanaloguesexhibitenhancedgrowthsuppressiveactivityinhumanpancreaticcancercells.AnticancerDrugs 20,444–449.CrossRefGoogleScholarPubMed 33 33. Lim,TG,Lee,SY,Huang,Z,etal.(2014)CurcuminsuppressesproliferationofcoloncancercellsbytargetingCDK2.CancerPrevRes(Phila) 7,466–474.CrossRefGoogleScholarPubMed 34 34. Jackson-Bernitsas,DG,Ichikawa,H,Takada,Y,etal.(2007)EvidencethatTNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKKpathwaymediatesconstitutiveNF-kappaBactivationandproliferationinhumanheadandnecksquamouscellcarcinoma.Oncogene 26,1385–1397.CrossRefGoogleScholarPubMed 35 35. Zhao,BL,Li,XJ,He,RG,etal.(1989)Scavengingeffectofextractsofgreenteaandnaturalantioxidantsonactiveoxygenradicals.CellBiophys 14,175–185.CrossRefGoogleScholarPubMed 36 36. Martins,RN,Harper,CG,Stokes,GB,etal.(1986)Increasedcerebralglucose-6-phosphatedehydrogenaseactivityinAlzheimer’sdiseasemayreflectoxidativestress.JNeurochem 46,1042–1045.CrossRefGoogleScholarPubMed 37 37. Hardy,J&Selkoe,DJ(2002)TheamyloidhypothesisofAlzheimer’sdisease:progressandproblemsontheroadtotherapeutics.Science 297,353–356.CrossRefGoogleScholarPubMed 38 38. Huang,HC&Jiang,ZF(2009)Accumulatedamyloid-βpeptideandhyperphosphorylatedtauprotein:relationshipandlinksinAlzheimer’sdisease.JAlzheimersDis 16,15–27.CrossRefGoogleScholarPubMed 39 39. Huang,HC,Chang,P,Dai,XL,etal.(2012)Protectiveeffectsofcurcuminonamyloid-beta-inducedneuronaloxidativedamage.NeurochemRes 37,1584–1597.CrossRefGoogleScholarPubMed 40 40. Garcia-Alloza,M,Borrelli,LA,Rozkalne,A,etal.(2007)Curcuminlabelsamyloidpathologyinvivo,disruptsexistingplaques,andpartiallyrestoresdistortedneuritesinanAlzheimermousemodel.JNeurochem 102,1095–1104.CrossRefGoogleScholar 41 41. Mutsuga,M,Chambers,JK,Uchida,K,etal.(2012)BindingofcurcumintosenileplaquesandcerebralamyloidangiopathyintheagedbrainofvariousanimalsandtoneurofibrillarytanglesinAlzheimer’sbrain.JVetMedSci 74,51–57.CrossRefGoogleScholarPubMed 42 42. Kosik,KS,Joachim,CL&Selkoe,DJ(1986)Microtubule-associatedproteintau(tau)isamajorantigeniccomponentofpairedhelicalfilamentsinAlzheimerdisease.ProcNatlAcadSciUSA 83,4044–4048.CrossRefGoogleScholarPubMed 43 43. Glenner,GG&Wong,CW(1984)Alzheimer’sdisease:initialreportofthepurificationandcharacterizationofanovelcerevrovascularamyloidprotein.BiochemBiophysResCommun 120,885–890.CrossRefGoogleScholar 44 44. Masters,CL,Multhaup,G,Simms,G,etal.(1985b)Neuronaloriginofacerebralamyloid:neurofibrillarytanglesofAlzheimer’sdiseasecontainthesameproteinastheamyloidofplaquecoresandbloodvessels.EMBOJ 4,2757–2763.GoogleScholarPubMed 45 45. Villemagne,VL&Rowe,CC(2013)Longnight’sjourneyintotheday:amyloid-betaimaginginAlzheimer’sdisease.JAlzheimersDis 33,Suppl.1,S349–S359.GoogleScholarPubMed 46 46. Haass,C&Selkoe,DJ(2007)Solubleproteinoligomersinneurodegeneration:lessonsfromtheAlzheimer’samyloidbeta-peptide.NatRevMolCellBiol 8,101–112.CrossRefGoogleScholarPubMed 47 47. Manczak,M,Mao,P,Calkins,MJ,etal.(2010)Mitochondria-targetedantioxidantsprotectagainstamyloid-betatoxicityinAlzheimer’sdiseaseneurons.JAlzheimersDis 20,Suppl.2,S609–S631.CrossRefGoogleScholarPubMed 48 48. Cash,DM,Liang,Y,Ryan,NS,etal.(2013)Thepatternofatrophyinfamilialalzheimerdisease:volumetricMRIresultsfromtheDIANstudy.Neurology 81,1425–1433.CrossRefGoogleScholarPubMed 49 49. Chetelat,G,Villemagne,VL,Villain,N,etal.(2012)Acceleratedcorticalatrophyincognitivelynormalelderlywithhighbeta-amyloiddeposition.Neurology 78,477–484.CrossRefGoogleScholarPubMed 50 50. Chetelat,G,Villemagne,VL,Pike,KE,etal.(2011)Independentcontributionoftemporalbeta-amyloiddepositiontomemorydeclineinthepre-dementiaphaseofAlzheimer’sdisease.Brain 134,798–807.CrossRefGoogleScholarPubMed 51 51. Reddy,PH,Tripathi,R,Troung,Q,etal.(2012)AbnormalmitochondrialdynamicsandsynapticdegenerationasearlyeventsinAlzheimer’sdisease:implicationstomitochondria-targetedantioxidanttherapeutics.BiochimBiophysActa 1822,639–649.CrossRefGoogleScholarPubMed 52 52. Ferreira,ST&Klein,WL(2011)TheAβoligomerhypothesisforsynapsefailureandmemorylossinAlzheimer’sdisease.NeurobiolLearnMem 96,529–543.CrossRefGoogleScholarPubMed 53 53. Zhao,J,Luo,Y,Jang,H,etal.(2012)Probingionchannelactivityofhumanisletamyloidpolypeptide(amylin).BiochimBiophysActa 1818,3121–3130.CrossRefGoogleScholar 54 54. Johnson,E,Brookmeyer,R&Ziegler-Graham,K(2007)ModelingtheeffectofAlzheimer’sdiseaseonmortality.IntJBiostat 3,Article13,12–21.CrossRefGoogleScholarPubMed 55 55. Brookmeyer,R,Gray,S&Kawas,C(1998)ProjectionsofAlzheimer’sdiseaseintheUnitedStatesandthepublichealthimpactofdelayingdiseaseonset.AmJPublicHealth 88,1337–1342.CrossRefGoogleScholarPubMed 56 56. Vickland,V,Morris,T,Draper,B,etal.(2012)ModellingtheImpactofInterventionstoDelaytheOnsetofDementiainAustralia.ReportforAlzheimersAustralia.Sydney,Australia:Alzheimer’sAustraliaInc.GoogleScholar 57 57. Bieschke,J,Herbst,M,Wiglenda,T,etal.(2012)Small-moleculeconversionoftoxicoligomerstonontoxicβ-sheet-richamyloidfibrils.NatChemBiol 8,93–101.CrossRefGoogleScholarPubMed 58 58. Ono,K,Hasegawa,K,Naiki,H,etal.(2004)Curcuminhaspotentanti-amyloidogeniceffectsforAlzheimer’sbeta-amyloidfibrilsinvitro .JNeurosciRes 75,742–750.CrossRefGoogleScholarPubMed 59 59. Reinke,AA&Gestwicki,JE(2007)Structure-activityofamyloidbetta-aggregationinhibitorsbasedoncurcumin:influenceoflinkerlengthandflexibility.ChemBiolDrugDes 70,206–215.CrossRefGoogleScholarPubMed 60 60. Yang,F,Lim,GP,Begum,AN,etal.(2005)Curcumininhibitsformationofamyloidbetaoligomersandfibrils,bindsplaques,andreducesamyloidinvivo .JBiolChem 280,5892–5901.CrossRefGoogleScholarPubMed 61 61. Ghalebani,L,Wahlstrom,A,Danielsson,J,etal.(2012)pH-dependenceofthespecificbindingofCu(II)andZn(II)ionstotheamyloid-βpeptide.BiochemBiophysResCommun 421,554–560.CrossRefGoogleScholarPubMed 62 62. Faller,P&Hureau,C(2012)AbioinorganicviewofAlzheimersdisease:whenmisplacedmetalions(Re)directtheelectronstothewrongtarget.Chemistry 18,15910–15920.CrossRefGoogleScholarPubMed 63 63. Banerjee,R(2014)Effectofcurcuminonthemetalioninducedfibrillizationofamyloid-βpeptide.SpectrochimActaAMolBiomolSpectrosc 117,798–800.CrossRefGoogleScholarPubMed 64 64. Kochi,A,Lee,HJ,Vithanarachchi,SM,etal.(2015)Inhibitoryactivityofcurcuminderivativestowardsmetal-freeandmetal-inducedamyloid-betaaggregation.CurrAlzheimerRes 12,415–423.CrossRefGoogleScholarPubMed 65 65. Fu,Z,Aucoin,D,Ahmed,M,etal.(2014)Cappingofaβ42oligomersbysmallmoleculeinhibitors.Biochemistry 53,7893–7903.CrossRefGoogleScholarPubMed 66 66. Mithu,VS,Sarkar,B,Bhowmik,D,etal.(2014)Curcuminaltersthesaltbridge-containingturnregioninamyloidβ(1-42)aggregates.JBiolChem 289,11122–11131.CrossRefGoogleScholarPubMed 67 67. Caesar,I,Jonson,M,Nilsson,K,etal.(2012)CurcuminpromotesAβfibrillationandreducesneurotoxicityintransgenicdrosophila(reducedneurotoxicitybypromotedfibrillation).PLOSONE 7,e31424.CrossRefGoogleScholar 68 68. Liu,H,Li,Z,Qiu,D,etal.(2010)Theinhibitoryeffectsofdifferentcurcuminoidsonβ-amyloidprotein,β-amyloidprecursorproteinandβ-siteamyloidprecursorproteincleavingenzyme1inswAPPHEK293cells.NeurosciLett 485,83–88.CrossRefGoogleScholarPubMed 69 69. Shimmyo,Y,Kihara,T,Akaike,A,etal.(2008)Epigallocatechin-3-gallateandcurcuminsuppressamyloidbeta-inducedbeta-siteAPPcleavingenzyme-1upregulation.Neuroreport 19,1329–1333.CrossRefGoogleScholarPubMed 70 70. Li,Y,Zhang,X&Si,L(2009)CurcuminreducesAbetagenerationbyPPARgammaactivationandBACE1inhibitioninvitro .JNeurochem 110,61.GoogleScholar 71 71. Wang,X,Kim,JR,Lee,SB,etal.(2014)EffectsofcurcuminoidsidentifiedinrhizomesofCurcumalongaonBACE-1inhibitoryandbehavioralactivityandlifespanofAlzheimer’sdiseaseDrosophilamodels.BMCComplementAlternMed 14,88–88.CrossRefGoogleScholarPubMed 72 72. Sathya,M,Premkumar,P,Karthick,C,etal.(2012)BACE1inAlzheimer’sdisease.ClinChimActa 414,171–178.CrossRefGoogleScholarPubMed 73 73. Jiaranaikulwanitch,J,Govitrapong,P,Fokin,VV,etal.(2012)FromBACE1inhibitortomultifunctionalityoftryptolineandtryptaminetriazolederivativesforAlzheimer’sdisease.Molecules 17,8312–8333.CrossRefGoogleScholarPubMed 74 74. Lin,R,Chen,X,Li,W,etal.(2008)ExposuretometalionsregulatesmRNAlevelsofAPPandBACE1inPC12cells:blockagebycurcumin.NeurosciLett 440,344–347.CrossRefGoogleScholarPubMed 75 75. Park,SY,Kim,HS,Cho,EK,etal.(2008)CurcuminprotectedPC12cellsagainstbeta-amyloid-inducedtoxicitythroughtheinhibitionofoxidativedamageandtauhyperphosphorylation.FoodChemToxicol 46,2881–2887.CrossRefGoogleScholarPubMed 76 76. Kim,DS,Park,SY&Kim,JK(2001)CurcuminoidsfromCurcumalongaL(Zingiberaceae)thatprotectPC12ratpheochromocytomaandnormalhumanumbilicalveinendothelialcellsfrombetaA(1-42)insult.NeurosciLett 303,57–61.CrossRefGoogleScholarPubMed 77 77. Shi,X,Zheng,Z,Li,J,etal.(2015)CurcumininhibitsAbeta-inducedmicroglialinflammatoryresponsesinvitro:involvementofERK1/2andp38signalingpathways.NeurosciLett 594,105–110.CrossRefGoogleScholarPubMed 78 78. Zhang,X,Yin,WK,Shi,XD,etal.(2011)CurcuminactivatesWnt/β-cateninsignalingpathwaythroughinhibitingtheactivityofGSK-3BinAPPswetransfectedSY5Ycells.EurJPharmSci 42,540–546.CrossRefGoogleScholar 79 79. Olivia,CA,Vargas,JY&Inestrosa,NC(2013)Wntsignaling:roleinLTP,neuralnetworksandmemory.AgeingResRev 12,786–800.CrossRefGoogleScholar 80 80. Purro,SA,Dickins,EM&Salinas,PC(2012)ThesecretedWntantagonistDickkopf-1isrequiredforamyloidB-medicatedsynapticloss.JNeurosci 32,3492–3498.CrossRefGoogleScholar 81 81. Wan,W,Xia,S,Kalionis,B,etal.(2014)TheroleofWntsignalinginthedevelopmentofAlzheimer’sdisease:apotentialtherapeutictarget.BiomedResInt 2014,1–9.GoogleScholarPubMed 82 82. Parr,C,Mirzaei,N&Christian,M(2015)ActivationoftheWnt/beta-cateninpathwayrepressesthetranscriptionofthebeta-amyloidprecursorproteincleavingenzyme(BACE-1)viabindingofT-cellfactor-4toBACE1promoter.FASEBJ 29,623–635.CrossRefGoogleScholar 83 83. Khan,MA,Akhtar,N,Sharma,V,etal.(2015)Productdevelopmentstudiesonsonocrystallizedcurcuminforthetreatmentofgastriccancer.Pharmaceutics 7,43–63.CrossRefGoogleScholarPubMed 84 84. Bates,KA,Verdile,G,Li,QX,etal.(2009)ClearancemechanismsofAlzheimer’samyloid-betapeptide:implicationsfortherapeuticdesignanddiagnostictests.MolPsychiatry 14,469–486.CrossRefGoogleScholarPubMed 85 85. Foster,JK,Verdile,G,Bates,KA,etal.(2009)ImmunizationinAlzheimer’sdisease:naivehopeorrealisticclinicalpotential? MolPsychiatry 14,239–251.CrossRefGoogleScholarPubMed 86 86. Fiala,M,Lin,J,Ringman,J,etal.(2005)Ineffectivephagocytosisofamyloid-betabymacrophagesofAlzheimer’sdiseasepatients.JAlzheimersDis 7,221–232.CrossRefGoogleScholarPubMed 87 87. Zhang,L,Fiala,M,Cashman,J,etal.(2006)Curcuminoidsenhanceamyloid-betauptakebymacrophagesofAlzheimer’sdiseasepatients.JAlzheimersDis 10,1–7.CrossRefGoogleScholarPubMed 88 88. Fiala,M,Liu,PT,Espinosa-Jeffrey,A,etal.(2007)InnateimmunityandtranscriptionofMGAT-IIandtoll-likereceptorsinAlzheimer’sdiseasepatientsareimprovedbybisdemethoxycurcumin.ProcNatlAcadSciUSA 104,12849–12854.CrossRefGoogleScholar 89 89. Masoumi,A,Goldenson,B,Ghirmai,S,etal.(2009)1alpha,25-DihydroxyvitaminD3interactswithcurcuminoidstostimulateamyloid-betaclearancebymacrophagesofAlzheimer’sdiseasepatients.JAlzheimersDis 17,703–717.CrossRefGoogleScholarPubMed 90 90. Mizwicki,MT,Menegaz,D,Barrientos-Durán,A,etal.(2012)Genomicandnongenomicsignalinginducedby1α,25(OH)2-vitaminD3promotestherecoveryofamyloid-βphagocytosisbyAlzheimer’sdiseasemacrophages.JAlzheimersDis 29,51–62.GoogleScholarPubMed 91 91. Soni,KB&Kuttan,R(1992)Effectoforalcurcuminadministrationonserumperoxidesandcholesterollevelsinhumanvolunteers.IndianJPhysiolPharmacol 36,273–275.GoogleScholarPubMed 92 92. Soudamini,KK,Unnikrishnan,MC,Soni,KB,etal.(1992)Inhibitionoflipidperoxidationandcholesterollevelsinmicebycurcumin.IndianJPhysiolPharmacol 36,239–243.GoogleScholarPubMed 93 93. Sreejayan,N&Rao,MNA(1994)Curcuminoidsaspotentinhibitorsoflipidperoxidation.JPharmPharmacol 46,1013–1016.CrossRefGoogleScholarPubMed 94 94. Peschel,D,Koerting,R&Nass,N(2007)Curcumininduceschangesinexpressionofgenesinvolvedincholesterolhomeostasis.JNutrBiochem 18,113–119.CrossRefGoogleScholarPubMed 95 95. Feng,D,Ohlsson,L&Duan,RD(2010)CurcumininhibitscholesteroluptakeinCaco-2cellsbydown-regulationofNPC1L1expression.LipidsHealthDis 9,40–45.CrossRefGoogleScholarPubMed 96 96. Kim,M&Kim,Y(2010)Hypocholesterolemiceffectsofcurcuminviaup-regulationofcholesterol7a-hydroxylaseinratsfedahighfatdiet.NutrResPract 4,191–195.CrossRefGoogleScholarPubMed 97 97. Tu,Y,Sun,D,Zeng,X,etal.(2014)Piperinepotentiatesthehypocholesterolemiceffectofcurcumininratsfedonahighfatdiet.ExpTherMed 8,260–266.CrossRefGoogleScholarPubMed 98 98. Zambón,D,Quintana,M,Mata,P,etal.(2010)Higherincidenceofmildcognitiveimpairmentinfamilialhypercholesterolemia.AmJMed 123,267–274.CrossRefGoogleScholarPubMed 99 99. Refolo,LM,Pappola,MA,Malester,B,etal.(2000)HypercholesterolemiaacceleratestheAlzheimer’samyloidpathologyinatransgenicmousemodel.NeurobiolDis 7,690–691.CrossRefGoogleScholar 100 100. Xiao,Z,Zhang,A,Lin,J,etal.(2014)Telomerase:atargetfortherapeuticeffectsofcurcuminandacurcuminderivativeinAbetainsultinvitro .PLOSONE 9,e101251.CrossRefGoogleScholar 101 101. Lim,GP,Chu,T,Yang,F,etal.(2001)ThecurryspicecurcuminreducesoxidativedamageandamyloidpathologyinanAlzheimertransgenicmouse.JNeurosci 21,8370–8377.GoogleScholar 102 102. Wang,YJ,Thomas,P,Zhong,JH,etal.(2009)Consumptionofgrapeseedextractpreventsamyloid-βdepositionandattenuatesinflammationinbrainofanAlzheimer’sdiseasemouse.NeurotoxRes 15,3–14.CrossRefGoogleScholarPubMed 103 103. Ma,QL,Yang,F,Rosario,ER,etal.(2009)Beta-amyloidoligomersinducephosphorylationoftauandinactivationofinsulinreceptorsubstrateviac-JunN-terminalkinasesignaling:suppressionbyomega-3fattyacidsandcurcumin.JNeurosci 29,9078–9089.CrossRefGoogleScholarPubMed 104 104. Frautschy,SA,Hu,W,Kim,P,etal.(2001)Phenolicanti-inflammatoryantioxidantreversalofAbeta-inducedcognitivedeficitsandneuropathology.NeurobiolAging 22,993–1005.CrossRefGoogleScholarPubMed 105 105. Fenech,M&Thomas,P(2010)GrapeseedpolyphenolsandcurcuminreducegenomicinstabilityeventsinatransgenicmousemodelforAlzheimer’sdisease.AlzheimersDement 6,S70–S72.CrossRefGoogleScholar 106 106. Belviranli,M,Okudan,N,Atalik,K,etal.(2013)Curcuminimprovesspatialmemeoryanddecreasesoxidativedamageinagedfemalerats.Biogerontology 14,187–196.CrossRefGoogleScholar 107 107. Ahmed,T,Enam,SA&Gilani,AH(2010)Curcuminoidsenhancememoryinanamyloid-infusedratmodelofAlzheimer’sdisease.Neuroscience 169,1296–1306.CrossRefGoogleScholar 108 108. Kim,SJ,Son,TG,Park,HR,etal.(2008)Curcuminstimulatesproliferationofembryonicneuralprogenitorcellsandneurogenesisintheadulthippocampus.JBiolChem 283,14497–14505.CrossRefGoogleScholarPubMed 109 109. Gerenu,G,Liu,K,Chojnacki,JE,etal.(2015)Curcumin/melatoninhybrid5-(4-hydroxy-phenyl)-3-oxo-pentanoicacid[2-(5-methoxy-1H-indol-3-yl)-ethyl]-amideamelioratesAD-likepathologyintheAPP/PS1mousemodel.ACSChemNeurosci 6,1393–1399.CrossRefGoogleScholar 110 110. Yanagisawa,D,Ibrahim,NF,Taguchi,H,etal.(2015)CurcuminderivativewiththesubstitutionatC-4position,butnotcurcumin,iseffectiveagainstamyloidpathologyinAPP/PS1mice.NeurobiolAging 36,201–210.CrossRefGoogleScholar 111 111. Dong,S,Zeng,Q,Mitchell,ES,etal.(2012)Curcuminenhancesneurogenesisandcognitioninagedrats:implicationsfortranscriptionalinteractionsrelatedtogrowthandsynapticplasticity.PLOSONE 7,e31211.CrossRefGoogleScholarPubMed 112 112. Ghoneim,AI,Abdel-Naim,AB,Khalifa,AE,etal.(2002)Protectiveeffectsofcurcuminagainstischaemia/reperfusioninsultinratforebrain.PharmacolRes 46,273–279.CrossRefGoogleScholar 113 113. Thiyagarajan,M&Sharma,SS(2004)Neuroprotectiveeffectofcurcumininmiddlecerebralarteryocclusioninducedfocalcerebralischemiainrats.LifeSci 74,969–985.CrossRefGoogleScholarPubMed 114 114. Jiang,J,Wang,W,Sun,YJ,etal.(2007)Neuroprotectiveeffectofcurcuminonfocalcerebralischemicratsbypreventingblood-brainbarrierdamage.EurJPharmacol 561,54–62.CrossRefGoogleScholarPubMed 115 115. Wang,YF,Gu,YT,Qin,GH,etal.(2013)Curcuminamelioratesthepermeabilityoftheblood–brainbarrierduringhypoxiabyupregulatinghemeoxygenase-1expressioninbrainmicrovascularendothelialcells.JMolNeurosci 51,344–351.CrossRefGoogleScholarPubMed 116 116. Tsai,YM,Chien,CF,Lin,LC,etal.(2011)Curcuminanditsnano-formulation:thekineticsoftissuedistributionandblood-brainbarrierpenetration.IntJPharm 416,331–338.CrossRefGoogleScholar 117 117. Cheng,KK,Yeung,CF,Ho,SW,etal.(2013)Highlystabilizedcurcuminnanoparticlestestedinaninvitroblood-brainbarriermodelandinAlzheimer’sdiseaseTg2576mice.AAPSJ 15,324–336.CrossRefGoogleScholar 118 118. Anand,P,Nair,HB,Sung,B,etal.(2010)DesignofcurcuminloadedPLGAnanoparticlesformulationwithenhancedcellularuptake,andincreasedbioactivityinvitroandsuperiorbioavailabilityinvivo .BiochemPharmacol 79,330–338.CrossRefGoogleScholarPubMed 119 119. Zona,C&LaFerla,B(2011)Synthesisoflabeledcurcuminderivativesastoolsforinvitrobloodbrainbarriertraffickingstudies.JLabelCompdRadiopharm 54,629–632.CrossRefGoogleScholar 120 120. Re,F,Gregori,M&Masserini,M(2012)Nanotechnologyforneurodegenerativedisorders.NanomedNanotechnol 8,S51–S58.CrossRefGoogleScholarPubMed 121 121. Shahani,K,Swaminathan,SK,Freeman,D,etal.(2010)Injectablesustainedreleasemicroparticlesofcurcumin:anewconceptforcancerchemoprevention.CancerRes 70,4443–4452.CrossRefGoogleScholarPubMed 122 122. Chiu,SS,Lui,E,Majeed,M,etal.(2011)Differentialdistributionofintravenouscurcuminformulationsintheratbrain.AnticancerRes 31,907–911.GoogleScholarPubMed 123 123. Shaikh,J,Ankola,DD,Beniwal,V,etal.(2009)Nanoparticleencapsulationimprovesoralbioavailabilityofcurcuminbyatleast9-foldwhencomparedtocurcuminadministeredwithpiperineasabsorptionenhancer.EurJPharmSci 37,223–230.CrossRefGoogleScholarPubMed 124 124. Ahmed,T&Gilani,AH(2009)Inhibitoryeffectofcurcuminoidsonacetylcholinesteraseactivityandattenuationofscopolamine-inducedamnesiamayexplainmedicinaluseofturmericinAlzheimer’sdisease.PharmocolBiochemBehav 91,554–559.CrossRefGoogleScholarPubMed 125 125. Gauthier,S&Molinuevo,JL(2013)Benefitsofcombinedcholinesteraseinhibitorandmemantinetreatmentinmoderate-severeAD.AlzheimersDement 9,326–331.CrossRefGoogleScholar 126 126. Peeyush,KT,Antony,S,Sonan,S,etal.(2011)Roleofcurcumininthepreventionofcholinergicmediatedcorticaldysfunctionsinstreptozotocin-induceddiabeticrats.MolCellEndocrinol 331,1–10.CrossRefGoogleScholar 127 127. Rajasekar,N,Dwivedi,S,Tota,SK,etal.(2013)Neuroprotectiveeffectofcurcuminonokadaicacidinducedmemoryimpairmentinmice.EurJPharmacol 715,381–394.CrossRefGoogleScholarPubMed 128 128. Tiwari,V&Chopra,K(2013)Protectiveeffectofcurcuminagainstchronicalcohol-inducedcognitivedeficitsandneuroinflammationintheadultratbrain.Neuroscience 6,147–158.CrossRefGoogleScholar 129 129. Orhan,IE(2013)Nature:asubstantialsourceofauspicioussubstanceswithacetylcholinesteraseinhibitoryaction.CurrNeuropharmacol 11,379–387.CrossRefGoogleScholarPubMed 130 130. Bulteau,AL,Moreau,M,Saunois,A,etal.(2006)Algaeextract-mediatedstimulationandprotectionofproteasomeactivitywithinhumankeratinocytesexposedtoUVAandUVBirradiation.AntioxidRedoxSignal 8,136–143.CrossRefGoogleScholarPubMed 131 131. Cole,GM,Teter,B&Frautschy,SA(2007)Neuroprotectiveeffectsofcurcumin.AdvExpMedBiol 595,197–212.CrossRefGoogleScholarPubMed 132 132. Ikonomovic,MD,Abrahamson,EE,Uz,T,etal.(2008)Increased5-lopoxygenaseimmunoreactivityinthehippocampusofpatientswithAlzheimer’sdisease.JHistochemCytochem 56,1065–1073.CrossRefGoogleScholarPubMed 133 133. Qu,J,Uz,T&Manev,H(2000)Inflammatory5-LOXmRNAandproteinareincreasedinbrainofagingrats.NeurobiolAging 21,647–652.CrossRefGoogleScholarPubMed 134 134. Firuzi,O,Zhuo,J,Chinnici,CM,etal.(2008)5-Lipoxygenasegenedisruptionreducesamyloid-βpathologyinamousemodelofAlzheimer’sdisease.FASEBJ 22,1169–1178.CrossRefGoogleScholar 135 135. Ohno,M(2014)RolesofeIF2αkinasesinthepathogenesisofAlzheimer’sdisease.FrontMolNeurosci 7,1–8.CrossRefGoogleScholarPubMed 136 136. Valera,E,Dargusch,R,Maher,PA,etal.(2013)Modulationof5-lipoxygenaseinproteotoxicityandAlzheimer’sdisease.JNeurosci 33,10512–11052.CrossRefGoogleScholarPubMed 137 137. Baum,L,Lam,C,Cheung,S,etal.(2008)Six-monthrandomized,placebo-controlled,double-blind,pilotclinicaltrialofcurcumininpatientswithAlzheimerdisease.JClinPsychopharm 28,110–114.CrossRefGoogleScholarPubMed 138 138. Ringman,JM,Frautschy,SA,Cole,GM,etal.(2005)ApotentialroleofthecurryspicecurcumininAlzheimer’sdisease.CurrAlzheimerRes 2,131–136.CrossRefGoogleScholarPubMed 139 139. Commandeur,J&Vermeulen,N(1996)Cytotoxicityandcytoprotectiveactivitiesofnaturalcompounds.Thecaseofcurcumin.Xenobiotica 26,667–680.CrossRefGoogleScholarPubMed 140 140. Ganguli,M,Chandra,V,Kamboh,MI,etal.(2000)ApolipoproteinEpolymorphismandAlzheimerdisease:theIndo-UScross-nationaldementiastudy.ArchNeurol 57,824–830.CrossRefGoogleScholarPubMed 141 141. Chandra,V,Pandav,R,Dodge,H,etal.(2001)IncidenceofAlzheimer’sdiseaseinaruralcommunityinIndiaTheIndo-USstudy.Neurology 57,985–989.CrossRefGoogleScholar 142 142. Shaji,S,Bose,S&Verghese,A(2005)PrevalenceofdementiainanurbanpopulationinKerala,India.BJPsychiatry 186,136–140.CrossRefGoogleScholar 143 143. Ng,TP,Chiam,PC,Lee,T,etal.(2006)Curryconsumptionandcognitivefunctionintheelderly.AmJEpidemiol 164,898–906.CrossRefGoogleScholarPubMed 144 144. Cox,KH,Pipingas,A&Scholey,AB(2015)Investigationoftheeffectsofsolidlipidcurcuminoncognitionandmoodinahealthyolderpopulation.JPsychopharmacol 29,642–651.CrossRefGoogleScholar 145 145. Ringman,JM,Frautschy,SA,Teng,E,etal.(2012)OralcurcuminforAlzheimer’sdisease:tolerabilityandefficacyina24-weekrandomized,doubleblind,placebo-controlledstudy.Alzheimer’sResTher 4,43–51.CrossRefGoogleScholar 146 146. DiSilvestro,RA,Joseph,E,Zhao,S,etal.(2012)Diverseeffectsofalowdosesupplementoflipidatedcurcumininhealthymiddleagedpeople.NutrJ 11,79–87.CrossRefGoogleScholarPubMed 147 147. vanStegerena,A,Rohlederb,N,Everaerda,W,etal.(2006)Salivaryalphaamylaseasmarkerforadrenergicactivityduringstress:effectofbetablockade.Psychoneuroendocrinology 31,137–141.CrossRefGoogleScholar 148 148. Gallacher,DV&Petersen,OH(1983)Stimulus-secretioncouplinginmamaliansalivaryglands.InternRevPhysiol 28,1–52.GoogleScholar 149 149. Chatterton,RT,Vogelsong,KM,Lu,YC,etal.(1996)Salivaryalpha-amylaseasameasureofendogenousadrenergicactivity.ClinPhysiol 16,433–448.CrossRefGoogleScholarPubMed 150 150. Hishikawa,N,Takahashi,Y,Amakusa,Y,etal.(2012)EffectsofturmericonAlzheimer’sdiseasewithbehavioralandpsychologicalsymptomsofdementia.Ayu 33,499–504.CrossRefGoogleScholarPubMed 151 151. Mastroeni,D,Grover,A,Delvaux,E,etal.(2011)EpigeneticmechanismsinAlzheimer’sdisease.JNeurobiolAging 32,1161–1180.CrossRefGoogleScholarPubMed 152 152. Daniilidou,M,Koutroumani,M&Tsolaki,M(2011)EpigeneticmechanismsinAlzheimer’sdisease.CurrMedChem 18,1751–1756.CrossRefGoogleScholarPubMed 153 153. Balazs,R,Vernon,J&Hardy,J(2011)EpigeneticmechanismsinAlzheimer’sdisease:progressbutmuchtodo.NeurobiolAging 32,1181–1187.CrossRefGoogleScholarPubMed 154 154. Chouliaras,L,Rutten,BPF,Kenis,G,etal.(2010)EpigeneticregulationinthepathophysiologyofAlzheimer’sdisease.ProgNeurobiol 90,498–510.CrossRefGoogleScholarPubMed 155 155. Teiten,MH,Dicato,M&Diederich,M(2013)Curcuminasaregulatorofepigeneticevents.MolNutrFoodRes 57,1619–1629.CrossRefGoogleScholarPubMed 156 156. Reuter,S,Gupta,SC,Park,B,etal.(2011)Epigeneticchangesinducedbycurcuminandothernaturalcompounds.GenesNutr 6,93–108.CrossRefGoogleScholarPubMed 157 157. Du,L,Xie,Z,Wu,LC,etal.(2012)ReactivationofRASSF1Ainbreastcancercellsbycurcumin.NutrCancer 64,1228–1235.CrossRefGoogleScholarPubMed 158 158. Sezgin,Z&Dincer,Y(2014)Alzheimer’sdiseaseandepigeneticdiet.NeurochemInt 78,105–116.CrossRefGoogleScholarPubMed 159 159. Li,YJ,Xu,M,Gao,ZH,etal.(2013)AlterationsofserumlevelsofBDNF-relatedmiRNAsinpatientswithdepression.PLOSONE 8,e63648.CrossRefGoogleScholarPubMed 160 160. Lopresti,AL,Maes,M,Marker,GL,etal.(2014)Curcuminforthetreatmentofmajordepression:arandomised,double-blind,placebocontrolledstudy. JAffectDisord 167,368–375.CrossRefGoogleScholarPubMed 161 161. Davinelli,S,Calabrese,V,Zella,D,etal.(2014)EpigeneticnutraceuticaldietsinAlzheimer’sdisease.JNutrHealthAging 18,800–805.CrossRefGoogleScholarPubMed 162 162. Ansari,R,Mahta,A,Mallack,E,etal.(2014)Hyperhomocysteinemiaandneurologicdisorders:areview.JClinNeurol 10,281–288.CrossRefGoogleScholarPubMed 163 163. Mattson,MP&Shea,TB(2003)Folateandhomocysteinemetabolisminneuralplasticityandneurodegenerativedisorders.TrendsNeurosci 26,137–146.CrossRefGoogleScholarPubMed 164 164. Fux,R,Kloor,D,Hermes,M,etal.(2005)EffectofacutehyperhomocysteinemiaonmethylationpotentialoferthrocytesandonDNAmethylationoflymphocytesinhealthymalevolunteers.AmJRenalPhysiol 289,F786–F792.CrossRefGoogleScholar 165 165. Ataie,A,Sabetkasaei,M,Haghparast,A,etal.(2010)Curcuminexertsneuroprotectiveeffectsagainsthomocysteineintracerebroventricularinjection-inducedcognitiveimpariementandoxidativestressinratbrain.JMedFood 13,821–826.CrossRefGoogleScholarPubMed 166 166. Cheng,AL,Hsu,CH,Lin,CH,etal.(2001)PhaseIclinicaltrialofcurcumin,achemopreventativeagent,inpatientswithhigh-riskorpre-malignantlesions.AnticancerRes 21,2895–2900.GoogleScholarPubMed 167 167. Gupta,SC,Kismali,G&Aggarwal,BB(2013)Curcumin,acomponentofturmeric:fromfarmtopharmacy.Biofactors 39,2–13.CrossRefGoogleScholarPubMed 168 168. Pan,CJ,Tang,JJ,Weng,YJ,etal.(2006)Preparation,characterizationandanticoagulationofcurcumin-elutingcontrolledbiodgradablecoatingstents.JControlRelease 116,2–49.CrossRefGoogleScholarPubMed 169 169. Dong-Chan,K,Sae-Kwang,K&Jong-Sup,B(2012)Anticoagulantactivitiesofcurcuminanditsderivative.BMBRep 45,221–226.GoogleScholar 170 170. Belkacemi,A,Doggui,S,Dao,L,etal.(2011)ChallengesassociatedwithcurcumintherapyinAlzheimerdisease.ExpRevMolMed 13,e34.CrossRefGoogleScholarPubMed 171 171. Sharma,RA,Steward,WP&Gescher,AJ(2007)Themoleculartargetsandtherapeuticusesofcurcumininhealthanddisease.AdvExpMedBiol 595,453–470.CrossRefGoogleScholar 172 172. Ireson,C,Orr,S&Jones,DJL(2001)Characterizationofmetabolitesofthechemopreventativeagentcurcumininhumanandrathepatocytesandintheratinvivo,andevaluationoftheirabilitytoinhibitphorbolester-inducedprosaglandinE2production.CancerRes 61,1058–1064.GoogleScholar 173 173. Benny,M&Anthony,B(2006)BioavailabilityofBiocurcumax™(BCM-95™).ResearchandDevelopmentLaboratory,ArjunaNaturalExtractsLtd,Binanipuram.GoogleScholar 174 174. Pescosolido,N,Giannotti,R,Plateroti,AM,etal.(2014)Curcumin:therapeuticalpotentialinophthalmology.PlantaMed 80,249–254.GoogleScholarPubMed 175 175. Rachmawati,H,Budiputra,DK&Mauludin,R(2014)Curcuminnanoemulsionfortransdermalapplication:formulationandevaluation.DrugDevIndPharm 41,560–566.CrossRefGoogleScholarPubMed 176 176. McClure,R,Yanagisawa,D,Stec,D,etal.(2015)Inhalablecurcumin:offeringthepotentialfortranslationtoimagingandtreatmentofAlzheimer’sdisease.JAlzheimersDis 44,283–295.GoogleScholarPubMed 177 177. Antony,B,Merina,B,Iyer,VS,etal.(2008)Apilotcross-overstudytoevaluatehumanoralbioavailabilityofBCM-95CG(Biocurcumax),anovelbioenhancedpreparationofcurcumin.IndianJPharmSci 70,445–449.CrossRefGoogleScholar 178 178. Merina,B&Antony,B(2006)BioavailabilityofBiocurcumax(BCM-095).SpiceIndia 2,11–16.GoogleScholar 179 179. Jayaraj,RL,Elangovan,N,Dhanalakshmi,C,etal.(2014)CNB-001,anovelpyrazolederivativemitigatesmotorimpairmentsassociatedwithneurodegenerationviasuppressionofneuroinflammatoryandapoptoticresponseinexperimentalParkinson’sdiseasemice.ChemBiolInteract 220,149–157.CrossRefGoogleScholarPubMed 180 180. Maher,P,Akaishi,T,Schubert,D,etal.(2010)Apyrazolederivativeofcurcuminenhancesmemory.NeurobiolAging 31,706–709.CrossRefGoogleScholarPubMed 181 181. Liu,Y,Dargusch,R,Maher,P,etal.(2008)Abroadlyneuroprotectivederivativeofcurcumin.JNeurochem 105,1336–1345.CrossRefGoogleScholarPubMed 182 182. Prasad,S,Tyagi,AK&Aggarwal,BB(2014)Recentdevelopmentsindelivery,bioavailability,absorptionandmetabolismofcurcumin:thegoldenpigmentfromgoldenspice.CancerResTreat 46,2–18.CrossRefGoogleScholarPubMed 183 183. Stockert,JC,DelCastillo,P,Gomez,A,etal.(1989)Fluorescencereactionofchromatinbycurcumin.ZNaturforschC 44,327–329.GoogleScholarPubMed 184 184. Wang,F,Wu,X,Wang,F,etal.(2006)Thesensitivefluorimetricmethodforthedeterminationofcurcuminusingtheenhancementofmixedmicelle.JFluoresc 16,53–59.CrossRefGoogleScholarPubMed 185 185. Ryu,EK,Choe,YS,Lee,KH,etal.(2006)Curcuminanddehydrozingeronederivatives:synthesis,radiolabeling,andevaluationforβ-amyloidplaqueimaging.JMedChem 49,6111–6119.CrossRefGoogleScholarPubMed 186 186. Mohorko,N,Repovš,G,Popovic,M,etal.(2010)Curcuminlabelingofneuronalfibrillartauinclusionsinhumanbrainsamples.JNeuropatholExpNeurol 69,405–414.CrossRefGoogleScholarPubMed 187 187. Koronyo-Hamaoui,M,Koronyo,Y,Ljubimov,AV,etal.(2011)IdentificationofamyloidplaquesinretinasfromAlzheimer’spatientsandnoninvasiveinvivoopticalimagingofretinalplaquesinamousemodel.Neuroimage,S204–S217.CrossRefGoogleScholarPubMed 188 188. Kayabasi,U,Sergott,RC&Rispoli,M(2014)RetinalexaminationforthediagnosisofAlzheimer’sdisease.IntJOphthalmolClinRes 1,1–4.CrossRefGoogleScholar 189 189. Cheng,KK,Chan,PS,Fan,S,etal.(2015)Curcumin-conjugatedmagneticnanoparticlesfordetectingamyloidplaquesinAlzheimer’sdiseasemiceusingmagneticresonanceimaging(MRI).Biomaterials 44,155–172.CrossRefGoogleScholar 190 190. Patil,R,Gangalum,PR,Wagner,S,etal.(2015)Curcumintargeted,polymalicacid-basedMRIcontrastagentforthedetectionofabetaplaquesinAlzheimer’sdisease.MacromolBiosci 15,1212–1217.CrossRefGoogleScholarPubMed 191 191. Frost,S,Martins,RN&Kanagasingam,Y(2010)OcularbiomarkersforearlydetectionofAlzheimer’sdisease.JAlzheimersDis 22,1–16.CrossRefGoogleScholarPubMed Viewincontent Fig.1Curcumin:reportedmechanismsofaction.BACE1,β-APP-cleavingenzyme-1;Aβ,βamyloid;APP,amyloidprecursorprotein. Viewincontent Table1StudiesusingcurcumininAlzheimer’sdisease(AD):diagnosis,preventionandtreatmentYouhave Access Openaccess 143CitedbyCitedbyLoading... CrossrefCitations Thisarticlehasbeencitedbythefollowingpublications.Thislistisgeneratedbasedondataprovidedby CrossRef. WU,Peng HUANG,Rui XIONG,Ya-Li and WU,Chao 2016. ProtectiveeffectsofcurcuminagainstliverfibrosisthroughmodulatingDNAmethylation. ChineseJournalofNaturalMedicines, Vol.14, Issue.4, p. 255. CrossRef GoogleScholar Feng,Hui-li Dang,Hui-zi Fan,Hui Chen,Xiao-pei Rao,Ying-xue Ren,Ying Yang,Jin-duo Shi,Jing Wang,Peng-wen and Tian,Jin-zhou 2016. CurcuminamelioratesinsulinsignallingpathwayinbrainofAlzheimer’sdiseasetransgenicmice. InternationalJournalofImmunopathologyandPharmacology, Vol.29, Issue.4, p. 734. CrossRef GoogleScholar Mazzanti,Gabriela and DiGiacomo,Silvia 2016. CurcuminandResveratrolintheManagementofCognitiveDisorders:WhatistheClinicalEvidence?. Molecules, Vol.21, Issue.9, p. 1243. CrossRef GoogleScholar Liu,Guo-min Xu,Kun Li,Juan and Luo,Yun-gang 2016. CurcuminupregulatesS100expressionandimprovesregenerationofthesciaticnervefollowingitscompleteamputationinmice. NeuralRegenerationResearch, Vol.11, Issue.8, p. 1304. CrossRef GoogleScholar Javaid,FatimahZara Brenton,Jonathan Guo,Li and Cordeiro,MariaF. 2016. VisualandOcularManifestationsofAlzheimer’sDiseaseandTheirUseasBiomarkersforDiagnosisandProgression. FrontiersinNeurology, Vol.7, Issue., CrossRef GoogleScholar Tramutola,Antonella Lanzillotta,Chiara and DiDomenico,Fabio 2017. TargetingmTORtoreduceAlzheimer-relatedcognitivedecline:fromcurrenthitstofuturetherapies. ExpertReviewofNeurotherapeutics, Vol.17, Issue.1, p. 33. CrossRef GoogleScholar Lenzi,Monia Malaguti,Marco Cocchi,Veronica Hrelia,Silvana and Hrelia,Patrizia 2017. CastaneasativaMill.barkextractexhibitschemopreventivepropertiestriggeringextrinsicapoptoticpathwayinJurkatcells. BMCComplementaryandAlternativeMedicine, Vol.17, Issue.1, CrossRef GoogleScholar Hope-Roberts,M and Horobin,RW 2017. Areviewofcurcuminasabiologicalstainandasaself-visualizingpharmaceuticalagent. Biotechnic&Histochemistry, Vol.92, Issue.5, p. 315. CrossRef GoogleScholar delaMonte,SuzanneM. 2017. InsulinResistanceandNeurodegeneration:ProgressTowardstheDevelopmentofNewTherapeuticsforAlzheimer’sDisease. Drugs, Vol.77, Issue.1, p. 47. CrossRef GoogleScholar Liddell,Jeffrey 2017. AreAstrocytesthePredominantCellTypeforActivationofNrf2inAgingandNeurodegeneration?. Antioxidants, Vol.6, Issue.3, p. 65. CrossRef GoogleScholar Coppedè,F. 2017. NeuropsychiatricDisordersandEpigenetics. p. 69. CrossRef GoogleScholar Friel,Howard and Frautschy,Sally 2017. AParadigmShifttoPreventandTreatAlzheimer'sDisease. p. 151. CrossRef GoogleScholar Lopresti,AdrianL 2017. Curcuminforneuropsychiatricdisorders:areviewofinvitro,animalandhumanstudies. JournalofPsychopharmacology, Vol.31, Issue.3, p. 287. CrossRef GoogleScholar Doustar,Jonah Torbati,Tania Black,KeithL. Koronyo,Yosef and Koronyo-Hamaoui,Maya 2017. OpticalCoherenceTomographyinAlzheimer’sDiseaseandOtherNeurodegenerativeDiseases. FrontiersinNeurology, Vol.8, Issue., CrossRef GoogleScholar vanWijngaarden,Peter Hadoux,Xavier Alwan,Mostafa Keel,Stuart and Dirani,Mohamed 2017. EmergingocularbiomarkersofAlzheimerdisease. Clinical&ExperimentalOphthalmology, Vol.45, Issue.1, p. 54. CrossRef GoogleScholar Fiala,Milan Kooij,Gijs Wagner,Karen Hammock,Bruce and Pellegrini,Matteo 2017. ModulationofinnateimmunityofpatientswithAlzheimer'sdiseasebyomega‐3fattyacids. TheFASEBJournal, Vol.31, Issue.8, p. 3229. CrossRef GoogleScholar Tang,Mengxi Taghibiglou,Changiz and Liu,Jia 2017. TheMechanismsofActionofCurcuminin Alzheimer’sDisease. JournalofAlzheimer'sDisease, Vol.58, Issue.4, p. 1003. CrossRef GoogleScholar Paradells-Navarro,Sara Benlloch-Navarro,MaríaSoledad AlmansaFrias,MaríaInmaculada Garcia-Esparza,Ma.Angeles Broccoli,Vania Miranda,María and Soria,JoséMiguel 2017. NeuroprotectionofBrainCellsbyLipoicAcidTreatmentafterCellularStress. ACSChemicalNeuroscience, Vol.8, Issue.3, p. 569. CrossRef GoogleScholar Barbara,Ruozi Belletti,Daniela Pederzoli,Francesca Masoni,Martina Keller,Johannes Ballestrazzi,Antonio Vandelli,MariaAngela Tosi,Giovanni and Grabrucker,AndreasM. 2017. NovelCurcuminloadednanoparticlesengineeredforBlood-BrainBarriercrossingandabletodisruptAbetaaggregates. InternationalJournalofPharmaceutics, Vol.526, Issue.1-2, p. 413. CrossRef GoogleScholar Li,Xiang Fang,Qin Tian,Xiaohong Wang,Xiaohong Ao,Qiang Hou,Weijian Tong,Hao Fan,Jun and Bai,Shuling 2017. CurcuminattenuatesthedevelopmentofthoracicaorticaneurysmbyinhibitingVEGFexpressionandinflammation. MolecularMedicineReports, Vol.16, Issue.4, p. 4455. CrossRef GoogleScholar Downloadfulllist GoogleScholarCitations ViewallGoogleScholarcitations forthisarticle. × Cancel Confirm ×
延伸文章資訊
- 1Examining the potential clinical value of curcumin in the ...
Curcumin derived from turmeric is well documented for its anti-carcinogenic, antioxidant and anti...
- 2Curcumin: A Review of Its' Effects on Human Health - NCBI
- 3Does turmeric's reputation translate into real health benefits?
Clinical trials show that curcumin, present in the spice, ... probing through the reams of user d...
- 4Is Your Turmeric Pure or Tainted? Easy Turmeric Test - Zizira
- 5Does Too Much Turmeric Have Side Effects? - Healthline