Differential Equations - Definitions - Pauls Online Math Notes
文章推薦指數: 80 %
The general solution to a differential equation is the most general form that the solution can take and doesn't take any initial conditions into ...
GoTo
Notes
PracticeandAssignmentproblemsarenotyetwritten.AstimepermitsIamworkingonthem,howeverIdon'thavetheamountoffreetimethatIusedtosoitwilltakeawhilebeforeanythingshowsuphere.
Show/Hide
ShowallSolutions/Steps/etc.
HideallSolutions/Steps/etc.
Sections
BasicConceptsIntroduction
DirectionFields
Chapters
FirstOrderDE's
Classes
Algebra
CalculusI
CalculusII
CalculusIII
DifferentialEquations
Extras
Algebra&TrigReview
CommonMathErrors
ComplexNumberPrimer
HowToStudyMath
CheatSheets&Tables
Misc
ContactMe
MathJaxHelpandConfiguration
NotesDownloads
CompleteBook
PracticeProblemsDownloads
Problemsnotyetwritten.
AssignmentProblemsDownloads
Problemsnotyetwritten.
OtherItems
GetURL'sforDownloadItems
PrintPageinCurrentForm(Default)
ShowallSolutions/StepsandPrintPage
HideallSolutions/StepsandPrintPage
Home
Classes
Algebra
Preliminaries
IntegerExponents
RationalExponents
Radicals
Polynomials
FactoringPolynomials
RationalExpressions
ComplexNumbers
SolvingEquationsandInequalities
SolutionsandSolutionSets
LinearEquations
ApplicationsofLinearEquations
EquationsWithMoreThanOneVariable
QuadraticEquations-PartI
QuadraticEquations-PartII
QuadraticEquations:ASummary
ApplicationsofQuadraticEquations
EquationsReducibletoQuadraticinForm
EquationswithRadicals
LinearInequalities
PolynomialInequalities
RationalInequalities
AbsoluteValueEquations
AbsoluteValueInequalities
GraphingandFunctions
Graphing
Lines
Circles
TheDefinitionofaFunction
GraphingFunctions
CombiningFunctions
InverseFunctions
CommonGraphs
Lines,CirclesandPiecewiseFunctions
Parabolas
Ellipses
Hyperbolas
MiscellaneousFunctions
Transformations
Symmetry
RationalFunctions
PolynomialFunctions
DividingPolynomials
Zeroes/RootsofPolynomials
GraphingPolynomials
FindingZeroesofPolynomials
PartialFractions
ExponentialandLogarithmFunctions
ExponentialFunctions
LogarithmFunctions
SolvingExponentialEquations
SolvingLogarithmEquations
Applications
SystemsofEquations
LinearSystemswithTwoVariables
LinearSystemswithThreeVariables
AugmentedMatrices
MoreontheAugmentedMatrix
NonlinearSystems
CalculusI
Review
Functions
InverseFunctions
TrigFunctions
SolvingTrigEquations
TrigEquationswithCalculators,PartI
TrigEquationswithCalculators,PartII
ExponentialFunctions
LogarithmFunctions
ExponentialandLogarithmEquations
CommonGraphs
Limits
TangentLinesandRatesofChange
TheLimit
One-SidedLimits
LimitProperties
ComputingLimits
InfiniteLimits
LimitsAtInfinity,PartI
LimitsAtInfinity,PartII
Continuity
TheDefinitionoftheLimit
Derivatives
TheDefinitionoftheDerivative
InterpretationoftheDerivative
DifferentiationFormulas
ProductandQuotientRule
DerivativesofTrigFunctions
DerivativesofExponentialandLogarithmFunctions
DerivativesofInverseTrigFunctions
DerivativesofHyperbolicFunctions
ChainRule
ImplicitDifferentiation
RelatedRates
HigherOrderDerivatives
LogarithmicDifferentiation
ApplicationsofDerivatives
RatesofChange
CriticalPoints
MinimumandMaximumValues
FindingAbsoluteExtrema
TheShapeofaGraph,PartI
TheShapeofaGraph,PartII
TheMeanValueTheorem
Optimization
MoreOptimizationProblems
L'Hospital'sRuleandIndeterminateForms
LinearApproximations
Differentials
Newton'sMethod
BusinessApplications
Integrals
IndefiniteIntegrals
ComputingIndefiniteIntegrals
SubstitutionRuleforIndefiniteIntegrals
MoreSubstitutionRule
AreaProblem
DefinitionoftheDefiniteIntegral
ComputingDefiniteIntegrals
SubstitutionRuleforDefiniteIntegrals
ApplicationsofIntegrals
AverageFunctionValue
AreaBetweenCurves
VolumesofSolidsofRevolution/MethodofRings
VolumesofSolidsofRevolution/MethodofCylinders
MoreVolumeProblems
Work
Extras
ProofofVariousLimitProperties
ProofofVariousDerivativeProperties
ProofofTrigLimits
ProofsofDerivativeApplicationsFacts
ProofofVariousIntegralProperties
AreaandVolumeFormulas
TypesofInfinity
SummationNotation
ConstantofIntegration
CalculusII
IntegrationTechniques
IntegrationbyParts
IntegralsInvolvingTrigFunctions
TrigSubstitutions
PartialFractions
IntegralsInvolvingRoots
IntegralsInvolvingQuadratics
IntegrationStrategy
ImproperIntegrals
ComparisonTestforImproperIntegrals
ApproximatingDefiniteIntegrals
ApplicationsofIntegrals
ArcLength
SurfaceArea
CenterofMass
HydrostaticPressure
Probability
ParametricEquationsandPolarCoordinates
ParametricEquationsandCurves
TangentswithParametricEquations
AreawithParametricEquations
ArcLengthwithParametricEquations
SurfaceAreawithParametricEquations
PolarCoordinates
TangentswithPolarCoordinates
AreawithPolarCoordinates
ArcLengthwithPolarCoordinates
SurfaceAreawithPolarCoordinates
ArcLengthandSurfaceAreaRevisited
Series&Sequences
Sequences
MoreonSequences
Series-TheBasics
Convergence/DivergenceofSeries
SpecialSeries
IntegralTest
ComparisonTest/LimitComparisonTest
AlternatingSeriesTest
AbsoluteConvergence
RatioTest
RootTest
StrategyforSeries
EstimatingtheValueofaSeries
PowerSeries
PowerSeriesandFunctions
TaylorSeries
ApplicationsofSeries
BinomialSeries
Vectors
Vectors-TheBasics
VectorArithmetic
DotProduct
CrossProduct
3-DimensionalSpace
The3-DCoordinateSystem
EquationsofLines
EquationsofPlanes
QuadricSurfaces
FunctionsofSeveralVariables
VectorFunctions
CalculuswithVectorFunctions
Tangent,NormalandBinormalVectors
ArcLengthwithVectorFunctions
Curvature
VelocityandAcceleration
CylindricalCoordinates
SphericalCoordinates
CalculusIII
3-DimensionalSpace
The3-DCoordinateSystem
EquationsofLines
EquationsofPlanes
QuadricSurfaces
FunctionsofSeveralVariables
VectorFunctions
CalculuswithVectorFunctions
Tangent,NormalandBinormalVectors
ArcLengthwithVectorFunctions
Curvature
VelocityandAcceleration
CylindricalCoordinates
SphericalCoordinates
PartialDerivatives
Limits
PartialDerivatives
InterpretationsofPartialDerivatives
HigherOrderPartialDerivatives
Differentials
ChainRule
DirectionalDerivatives
ApplicationsofPartialDerivatives
TangentPlanesandLinearApproximations
GradientVector,TangentPlanesandNormalLines
RelativeMinimumsandMaximums
AbsoluteMinimumsandMaximums
LagrangeMultipliers
MultipleIntegrals
DoubleIntegrals
IteratedIntegrals
DoubleIntegralsoverGeneralRegions
DoubleIntegralsinPolarCoordinates
TripleIntegrals
TripleIntegralsinCylindricalCoordinates
TripleIntegralsinSphericalCoordinates
ChangeofVariables
SurfaceArea
AreaandVolumeRevisited
LineIntegrals
VectorFields
LineIntegrals-PartI
LineIntegrals-PartII
LineIntegralsofVectorFields
FundamentalTheoremforLineIntegrals
ConservativeVectorFields
Green'sTheorem
SurfaceIntegrals
CurlandDivergence
ParametricSurfaces
SurfaceIntegrals
SurfaceIntegralsofVectorFields
Stokes'Theorem
DivergenceTheorem
DifferentialEquations
BasicConcepts
Definitions
DirectionFields
FinalThoughts
FirstOrderDE's
LinearEquations
SeparableEquations
ExactEquations
BernoulliDifferentialEquations
Substitutions
IntervalsofValidity
ModelingwithFirstOrderDE's
EquilibriumSolutions
Euler'sMethod
SecondOrderDE's
BasicConcepts
Real&DistinctRoots
ComplexRoots
RepeatedRoots
ReductionofOrder
FundamentalSetsofSolutions
MoreontheWronskian
NonhomogeneousDifferentialEquations
UndeterminedCoefficients
VariationofParameters
MechanicalVibrations
LaplaceTransforms
TheDefinition
LaplaceTransforms
InverseLaplaceTransforms
StepFunctions
SolvingIVP'swithLaplaceTransforms
NonconstantCoefficientIVP's
IVP'sWithStepFunctions
DiracDeltaFunction
ConvolutionIntegrals
TableOfLaplaceTransforms
SystemsofDE's
Review:SystemsofEquations
Review:Matrices&Vectors
Review:Eigenvalues&Eigenvectors
SystemsofDifferentialEquations
SolutionstoSystems
PhasePlane
RealEigenvalues
ComplexEigenvalues
RepeatedEigenvalues
NonhomogeneousSystems
LaplaceTransforms
Modeling
SeriesSolutionstoDE's
Review:PowerSeries
Review:TaylorSeries
SeriesSolutions
EulerEquations
HigherOrderDifferentialEquations
BasicConceptsfornthOrderLinearEquations
LinearHomogeneousDifferentialEquations
UndeterminedCoefficients
VariationofParameters
LaplaceTransforms
SystemsofDifferentialEquations
SeriesSolutions
BoundaryValueProblems&FourierSeries
BoundaryValueProblems
EigenvaluesandEigenfunctions
PeriodicFunctions&OrthogonalFunctions
FourierSineSeries
FourierCosineSeries
FourierSeries
ConvergenceofFourierSeries
PartialDifferentialEquations
TheHeatEquation
TheWaveEquation
Terminology
SeparationofVariables
SolvingtheHeatEquation
HeatEquationwithNon-ZeroTemperatureBoundaries
Laplace'sEquation
VibratingString
SummaryofSeparationofVariables
Extras
Algebra&TrigReview
Algebra
Exponents
AbsoluteValue
Radicals
Rationalizing
Functions
MultiplyingPolynomials
Factoring
SimplifyingRationalExpressions
GraphingandCommonGraphs
SolvingEquations,PartI
SolvingEquations,PartII
SolvingSystemsofEquations
SolvingInequalities
AbsoluteValueEquationsandInequalities
Trigonometry
TrigFunctionEvaluation
GraphsofTrigFunctions
TrigFormulas
SolvingTrigEquations
InverseTrigFunctions
Exponentials&Logarithms
BasicExponentialFunctions
BasicLogarithmFunctions
LogarithmProperties
SimplifyingLogarithms
SolvingExponentialEquations
SolvingLogarithmEquations
CommonMathErrors
GeneralErrors
AlgebraErrors
TrigErrors
CommonErrors
CalculusErrors
ComplexNumberPrimer
TheDefinition
Arithmetic
ConjugateandModulus
PolarandExponentialForms
PowersandRoots
HowToStudyMath
GeneralTips
TakingNotes
GettingHelp
DoingHomework
ProblemSolving
StudyingForanExam
TakinganExam
LearnFromYourErrors
MiscLinks
ContactMe
Links
MathJaxHelpandConfiguration
PrivacyStatement
SiteHelp&FAQ
TermsofUse
Paul'sOnlineNotes
Home
/
DifferentialEquations
/
BasicConcepts
/Definitions
Prev.Section
Notes
NextSection
ShowMobileNotice
ShowAllNotes HideAllNotes
MobileNotice
Youappeartobeonadevicewitha"narrow"screenwidth(i.e.youareprobablyonamobilephone).Duetothenatureofthemathematicsonthissiteitisbestviewsinlandscapemode.Ifyourdeviceisnotinlandscapemodemanyoftheequationswillrunoffthesideofyourdevice(shouldbeabletoscrolltoseethem)andsomeofthemenuitemswillbecutoffduetothenarrowscreenwidth.
Section1-1:Definitions
DifferentialEquation
Thefirstdefinitionthatweshouldcovershouldbethatofdifferentialequation.Adifferentialequationisanyequationwhichcontainsderivatives,eitherordinaryderivativesorpartialderivatives.
Thereisonedifferentialequationthateverybodyprobablyknows,thatisNewton’sSecondLawofMotion.Ifanobjectofmass\(m\)ismovingwithacceleration\(a\)andbeingactedonwithforce\(F\)thenNewton’sSecondLawtellsus.
\[\begin{equation}F=ma\label{eq:eq1}\end{equation}\]
Toseethatthisisinfactadifferentialequationweneedtorewriteitalittle.First,rememberthatwecanrewritetheacceleration,\(a\),inoneoftwoways.
\[\begin{equation}a=\frac{{dv}}{{dt}}\hspace{0.25in}{\mbox{OR}}\hspace{0.25in}\,\,\,\,\,\,a=\frac{{{d^2}u}}{{d{t^2}}}\label{eq:eq2}\end{equation}\]
Where\(v\)isthevelocityoftheobjectand\(u\)isthepositionfunctionoftheobjectatanytime\(t\).Weshouldalsorememberatthispointthattheforce,\(F\)mayalsobeafunctionoftime,velocity,and/orposition.
So,withallthesethingsinmindNewton’sSecondLawcannowbewrittenasadifferentialequationintermsofeitherthevelocity,\(v\),ortheposition,\(u\),oftheobjectasfollows.
\[\begin{equation}m\frac{{dv}}{{dt}}=F\left({t,v}\right)\label{eq:eq3}\end{equation}\]
\[\begin{equation}m\frac{{{d^2}u}}{{d{t^2}}}=F\left({t,u,\frac{{du}}{{dt}}}\right)\label{eq:eq4}\end{equation}\]
So,hereisourfirstdifferentialequation.Wewillseebothformsofthisinlaterchapters.
Hereareafewmoreexamplesofdifferentialequations.
\[\begin{equation}ay''+by'+cy=g\left(t\right)\label{eq:eq5}\end{equation}\]
\[\begin{equation}\sin\left(y\right)\frac{{{d^2}y}}{{d{x^2}}}=\left({1-y}\right)\frac{{dy}}{{dx}}+{y^2}{{\bf{e}}^{-5y}}\label{eq:eq6}\end{equation}\]
\[\begin{equation}{y^{\left(4\right)}}+10y'''-4y'+2y=\cos\left(t\right)\label{eq:eq7}\end{equation}\]
\[\begin{equation}{\alpha^2}\frac{{{\partial^2}u}}{{\partial{x^2}}}=\frac{{\partialu}}{{\partialt}}\label{eq:eq8}\end{equation}\]
\[\begin{equation}{a^2}{u_{xx}}={u_{tt}}\label{eq:eq9}\end{equation}\]
\[\begin{equation}\frac{{{\partial^3}u}}{{{\partial}x^2\partialt}}=1+\frac{{\partialu}}{{\partialy}}\label{eq:eq10}\end{equation}\]
Order
Theorderofadifferentialequationisthelargestderivativepresentinthedifferentialequation.Inthedifferentialequationslistedabove\(\eqref{eq:eq3}\)isafirstorderdifferentialequation,\(\eqref{eq:eq4}\),\(\eqref{eq:eq5}\),\(\eqref{eq:eq6}\),\(\eqref{eq:eq8}\),and\(\eqref{eq:eq9}\)aresecondorderdifferentialequations,\(\eqref{eq:eq10}\)isathirdorderdifferentialequationand\(\eqref{eq:eq7}\)isafourthorderdifferentialequation.
Notethattheorderdoesnotdependonwhetherornotyou’vegotordinaryorpartialderivativesinthedifferentialequation.
Wewillbelookingalmostexclusivelyatfirstandsecondorderdifferentialequationsinthesenotes.Asyouwillseemostofthesolutiontechniquesforsecondorderdifferentialequationscanbeeasily(andnaturally)extendedtohigherorderdifferentialequationsandwe’lldiscussthatidealateron.
OrdinaryandPartialDifferentialEquations
Adifferentialequationiscalledanordinarydifferentialequation,abbreviatedbyode,ifithasordinaryderivativesinit.Likewise,adifferentialequationiscalledapartialdifferentialequation,abbreviatedbypde,ifithaspartialderivativesinit.Inthedifferentialequationsabove\(\eqref{eq:eq3}\)-\(\eqref{eq:eq7}\)areode’sand\(\eqref{eq:eq8}\)-\(\eqref{eq:eq10}\)arepde’s.
Thevastmajorityofthesenoteswilldealwithode’s.Theonlyexceptiontothiswillbethelastchapterinwhichwe’lltakeabrieflookatacommonandbasicsolutiontechniqueforsolvingpde’s.
LinearDifferentialEquations
Alineardifferentialequationisanydifferentialequationthatcanbewritteninthefollowingform.
\[\begin{equation}{a_n}\left(t\right){y^{\left(n\right)}}\left(t\right)+{a_{n-1}}\left(t\right){y^{\left({n-1}\right)}}\left(t\right)+\cdots+{a_1}\left(t\right)y'\left(t\right)+{a_0}\left(t\right)y\left(t\right)=g\left(t\right)\label{eq:eq11}\end{equation}\]
Theimportantthingtonoteaboutlineardifferentialequationsisthattherearenoproductsofthefunction,\(y\left(t\right)\),anditsderivativesandneitherthefunctionoritsderivativesoccurtoanypowerotherthanthefirstpower.Alsonotethatneitherthefunctionoritsderivativesare“inside”anotherfunction,forexample,\(\sqrt{y'}\)or\({{\bf{e}}^y}\).
Thecoefficients\({a_0}\left(t\right),\,\,\ldots\,\,,{a_n}\left(t\right)\)and\(g\left(t\right)\)canbezeroornon-zerofunctions,constantornon-constantfunctions,linearornon-linearfunctions.Onlythefunction,\(y\left(t\right)\),anditsderivativesareusedindeterminingifadifferentialequationislinear.
Ifadifferentialequationcannotbewrittenintheform,\(\eqref{eq:eq11}\)thenitiscalledanon-lineardifferentialequation.
In\(\eqref{eq:eq5}\)-\(\eqref{eq:eq7}\)aboveonly\(\eqref{eq:eq6}\)isnon-linear,theothertwoarelineardifferentialequations.Wecan’tclassify\(\eqref{eq:eq3}\)and\(\eqref{eq:eq4}\)sincewedonotknowwhatformthefunction\(F\)has.Thesecouldbeeitherlinearornon-lineardependingon\(F\).
Solution
Asolutiontoadifferentialequationonaninterval\(\alpha
延伸文章資訊
- 1Differential equations - Mathematics
- 2Differential Equations - Basic Concepts
The most general linear second order differential equation is in the form. ... to solve second or...
- 3Differential Equations - Definitions - Pauls Online Math Notes
The general solution to a differential equation is the most general form that the solution can ta...
- 4General and Particular Differential Equations Solutions
The general solution geometrically represents an n-parameter family of curves. For example, the g...
- 5Differential Equations Solution Guide - Math is Fun
There is no magic way to solve all Differential Equations. ... For non-homogeneous equations the ...