Ordinary differential equation - Wikipedia

文章推薦指數: 80 %
投票人數:10人

General definition Ordinarydifferentialequation FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Differentialequationcontainingderivativeswithrespecttoonlyonevariable DifferentialequationsNavier–Stokesdifferentialequationsusedtosimulateairflowaroundanobstruction Scope Fields NaturalsciencesEngineering Astronomy Physics Chemistry Biology Geology Appliedmathematics Continuummechanics Chaostheory Dynamicalsystems Socialsciences Economics Populationdynamics Classification Types Ordinary Partial Differential-algebraic Integro-differential Fractional Linear Non-linear Byvariabletype Dependentandindependentvariables Autonomous Coupled /Decoupled Exact Homogeneous /Nonhomogeneous Features Order Operator Notation Relationtoprocesses Difference(discreteanalogue) Stochastic Stochasticpartial Delay Solution Existenceanduniqueness Picard–Lindelöftheorem Peanoexistencetheorem Carathéodory'sexistencetheorem Cauchy–Kowalevskitheorem Generaltopics Wronskian Phaseportrait Phasespace Lyapunov /Asymptotic /Exponentialstability Rateofconvergence Series /Integralsolutions Numericalintegration Diracdeltafunction Solutionmethods Inspection Methodofcharacteristics Euler Exponentialresponseformula Finitedifference (Crank–Nicolson) Finiteelement Infiniteelement Finitevolume Galerkin Petrov–Galerkin Integratingfactor Integraltransforms Perturbationtheory Runge–Kutta Separationofvariables Undeterminedcoefficients Variationofparameters People List IsaacNewton JosephFourier GottfriedLeibniz LeonhardEuler ÉmilePicard JózefMariaHoene-Wroński ErnstLindelöf RudolfLipschitz Augustin-LouisCauchy JohnCrank PhyllisNicolson CarlDavidTolméRunge MartinKutta vte Inmathematics,anordinarydifferentialequation(ODE)isadifferentialequationcontainingoneormorefunctionsofoneindependentvariableandthederivativesofthosefunctions.[1]Thetermordinaryisusedincontrastwiththetermpartialdifferentialequationwhichmaybewithrespecttomorethanoneindependentvariable.[2] Contents 1Differentialequations 2Background 3Definitions 3.1Generaldefinition 3.2SystemofODEs 3.3Solutions 3.4SolutionsofFiniteDuration 4Theories 4.1Singularsolutions 4.2Reductiontoquadratures 4.3Fuchsiantheory 4.4Lie'stheory 4.5Sturm–Liouvilletheory 5Existenceanduniquenessofsolutions 5.1Localexistenceanduniquenesstheoremsimplified 5.2Globaluniquenessandmaximumdomainofsolution 6Reductionoforder 6.1Reductiontoafirst-ordersystem 7Summaryofexactsolutions 7.1Separableequations 7.2Generalfirst-orderequations 7.3Generalsecond-orderequations 7.4Lineartothenthorderequations 8Theguessingmethod 9SoftwareforODEsolving 10Seealso 11Notes 12References 13Bibliography 14Externallinks Differentialequations[edit] Alineardifferentialequationisadifferentialequationthatisdefinedbyalinearpolynomialintheunknownfunctionanditsderivatives,thatisanequationoftheform a 0 ( x ) y + a 1 ( x ) y ′ + a 2 ( x ) y ″ + ⋯ + a n ( x ) y ( n ) + b ( x ) = 0 , {\displaystylea_{0}(x)y+a_{1}(x)y'+a_{2}(x)y''+\cdots+a_{n}(x)y^{(n)}+b(x)=0,} where a 0 ( x ) {\displaystylea_{0}(x)} ,..., a n ( x ) {\displaystylea_{n}(x)} and b ( x ) {\displaystyleb(x)} arearbitrarydifferentiablefunctionsthatdonotneedtobelinear,and y ′ , … , y ( n ) {\displaystyley',\ldots,y^{(n)}} arethesuccessivederivativesoftheunknownfunctionyofthevariablex. Amongordinarydifferentialequations,lineardifferentialequationsplayaprominentroleforseveralreasons.Mostelementaryandspecialfunctionsthatareencounteredinphysicsandappliedmathematicsaresolutionsoflineardifferentialequations(seeHolonomicfunction).Whenphysicalphenomenaaremodeledwithnon-linearequations,theyaregenerallyapproximatedbylineardifferentialequationsforaneasiersolution.Thefewnon-linearODEsthatcanbesolvedexplicitlyaregenerallysolvedbytransformingtheequationintoanequivalentlinearODE(see,forexampleRiccatiequation). SomeODEscanbesolvedexplicitlyintermsofknownfunctionsandintegrals.Whenthatisnotpossible,theequationforcomputingtheTaylorseriesofthesolutionsmaybeuseful.Forappliedproblems,numericalmethodsforordinarydifferentialequationscansupplyanapproximationofthesolution. Background[edit] ThetrajectoryofaprojectilelaunchedfromacannonfollowsacurvedeterminedbyanordinarydifferentialequationthatisderivedfromNewton'ssecondlaw. Ordinarydifferentialequations(ODEs)ariseinmanycontextsofmathematicsandsocialandnaturalsciences.Mathematicaldescriptionsofchangeusedifferentialsandderivatives.Variousdifferentials,derivatives,andfunctionsbecomerelatedviaequations,suchthatadifferentialequationisaresultthatdescribesdynamicallychangingphenomena,evolution,andvariation.Often,quantitiesaredefinedastherateofchangeofotherquantities(forexample,derivativesofdisplacementwithrespecttotime),orgradientsofquantities,whichishowtheyenterdifferentialequations. Specificmathematicalfieldsincludegeometryandanalyticalmechanics.Scientificfieldsincludemuchofphysicsandastronomy(celestialmechanics),meteorology(weathermodeling),chemistry(reactionrates),[3]biology(infectiousdiseases,geneticvariation),ecologyandpopulationmodeling(populationcompetition),economics(stocktrends,interestratesandthemarketequilibriumpricechanges). Manymathematicianshavestudieddifferentialequationsandcontributedtothefield,includingNewton,Leibniz,theBernoullifamily,Riccati,Clairaut,d'Alembert,andEuler. AsimpleexampleisNewton'ssecondlawofmotion—therelationshipbetweenthedisplacementxandthetimetofanobjectundertheforceF,isgivenbythedifferentialequation m d 2 x ( t ) d t 2 = F ( x ( t ) ) {\displaystylem{\frac{\mathrm{d}^{2}x(t)}{\mathrm{d}t^{2}}}=F(x(t))\,} whichconstrainsthemotionofaparticleofconstantmassm.Ingeneral,Fisafunctionofthepositionx(t)oftheparticleattimet.Theunknownfunctionx(t)appearsonbothsidesofthedifferentialequation,andisindicatedinthenotationF(x(t)).[4][5][6][7] Definitions[edit] Inwhatfollows,letybeadependentvariableandxanindependentvariable,andy=f(x)isanunknownfunctionofx.Thenotationfordifferentiationvariesdependingupontheauthoranduponwhichnotationismostusefulforthetaskathand.Inthiscontext,theLeibniz'snotation(dy/dx,d2y/dx2,…,dny/dxn)ismoreusefulfordifferentiationandintegration,whereasLagrange'snotation(y′,y′′,…,y(n))ismoreusefulforrepresentingderivativesofanyordercompactly,andNewton'snotation ( y ˙ , y ¨ , y . . . ) {\displaystyle({\dot{y}},{\ddot{y}},{\overset{...}{y}})} isoftenusedinphysicsforrepresentingderivativesofloworderwithrespecttotime. Generaldefinition[edit] GivenF,afunctionofx,y,andderivativesofy.Thenanequationoftheform F ( x , y , y ′ , … , y ( n − 1 ) ) = y ( n ) {\displaystyleF\left(x,y,y',\ldots,y^{(n-1)}\right)=y^{(n)}} iscalledanexplicitordinarydifferentialequationofordern.[8][9] Moregenerally,animplicitordinarydifferentialequationoforderntakestheform:[10] F ( x , y , y ′ , y ″ ,   … ,   y ( n ) ) = 0 {\displaystyleF\left(x,y,y',y'',\\ldots,\y^{(n)}\right)=0} Therearefurtherclassifications: AutonomousAdifferentialequationnotdependingonxiscalledautonomous. Linear AdifferentialequationissaidtobelinearifFcanbewrittenasalinearcombinationofthederivativesofy: y ( n ) = ∑ i = 0 n − 1 a i ( x ) y ( i ) + r ( x ) {\displaystyley^{(n)}=\sum_{i=0}^{n-1}a_{i}(x)y^{(i)}+r(x)} wherea i (x)andr (x)arecontinuousfunctionsofx.[8][11][12] Thefunctionr(x)iscalledthesourceterm,leadingtotwofurtherimportantclassifications:[11][13] HomogeneousIfr(x)=0,andconsequentlyone"automatic"solutionisthetrivialsolution,y=0.Thesolutionofalinearhomogeneousequationisacomplementaryfunction,denotedherebyyc. Nonhomogeneous(orinhomogeneous)Ifr(x)≠0.Theadditionalsolutiontothecomplementaryfunctionistheparticularintegral,denotedherebyyp. Non-linearAdifferentialequationthatcannotbewrittenintheformofalinearcombination. SystemofODEs[edit] Mainarticle:Systemofdifferentialequations Anumberofcoupleddifferentialequationsformasystemofequations.Ifyisavectorwhoseelementsarefunctions;y(x)=[y1(x),y2(x),...,ym(x)],andFisavector-valuedfunctionofyanditsderivatives,then y ( n ) = F ( x , y , y ′ , y ″ , … , y ( n − 1 ) ) {\displaystyle\mathbf{y}^{(n)}=\mathbf{F}\left(x,\mathbf{y},\mathbf{y}',\mathbf{y}'',\ldots,\mathbf{y}^{(n-1)}\right)} isanexplicitsystemofordinarydifferentialequationsofordernanddimensionm.Incolumnvectorform: ( y 1 ( n ) y 2 ( n ) ⋮ y m ( n ) ) = ( f 1 ( x , y , y ′ , y ″ , … , y ( n − 1 ) ) f 2 ( x , y , y ′ , y ″ , … , y ( n − 1 ) ) ⋮ f m ( x , y , y ′ , y ″ , … , y ( n − 1 ) ) ) {\displaystyle{\begin{pmatrix}y_{1}^{(n)}\\y_{2}^{(n)}\\\vdots\\y_{m}^{(n)}\end{pmatrix}}={\begin{pmatrix}f_{1}\left(x,\mathbf{y},\mathbf{y}',\mathbf{y}'',\ldots,\mathbf{y}^{(n-1)}\right)\\f_{2}\left(x,\mathbf{y},\mathbf{y}',\mathbf{y}'',\ldots,\mathbf{y}^{(n-1)}\right)\\\vdots\\f_{m}\left(x,\mathbf{y},\mathbf{y}',\mathbf{y}'',\ldots,\mathbf{y}^{(n-1)}\right)\end{pmatrix}}} Thesearenotnecessarilylinear.Theimplicitanalogueis: F ( x , y , y ′ , y ″ , … , y ( n ) ) = 0 {\displaystyle\mathbf{F}\left(x,\mathbf{y},\mathbf{y}',\mathbf{y}'',\ldots,\mathbf{y}^{(n)}\right)={\boldsymbol{0}}} where0=(0,0,...,0)isthezerovector.Inmatrixform ( f 1 ( x , y , y ′ , y ″ , … , y ( n ) ) f 2 ( x , y , y ′ , y ″ , … , y ( n ) ) ⋮ f m ( x , y , y ′ , y ″ , … , y ( n ) ) ) = ( 0 0 ⋮ 0 ) {\displaystyle{\begin{pmatrix}f_{1}(x,\mathbf{y},\mathbf{y}',\mathbf{y}'',\ldots,\mathbf{y}^{(n)})\\f_{2}(x,\mathbf{y},\mathbf{y}',\mathbf{y}'',\ldots,\mathbf{y}^{(n)})\\\vdots\\f_{m}(x,\mathbf{y},\mathbf{y}',\mathbf{y}'',\ldots,\mathbf{y}^{(n)})\end{pmatrix}}={\begin{pmatrix}0\\0\\\vdots\\0\end{pmatrix}}} Forasystemoftheform F ( x , y , y ′ ) = 0 {\displaystyle\mathbf{F}\left(x,\mathbf{y},\mathbf{y}'\right)={\boldsymbol{0}}} ,somesourcesalsorequirethattheJacobianmatrix ∂ F ( x , u , v ) ∂ v {\displaystyle{\frac{\partial\mathbf{F}(x,\mathbf{u},\mathbf{v})}{\partial\mathbf{v}}}} benon-singularinordertocallthisanimplicitODE[system];animplicitODEsystemsatisfyingthisJacobiannon-singularityconditioncanbetransformedintoanexplicitODEsystem.Inthesamesources,implicitODEsystemswithasingularJacobianaretermeddifferentialalgebraicequations(DAEs).Thisdistinctionisnotmerelyoneofterminology;DAEshavefundamentallydifferentcharacteristicsandaregenerallymoreinvolvedtosolvethan(nonsingular)ODEsystems.[14][15][16]Presumablyforadditionalderivatives,theHessianmatrixandsofortharealsoassumednon-singularaccordingtothisscheme,[citationneeded]althoughnotethatanyODEofordergreaterthanonecanbe(andusuallyis)rewrittenassystemofODEsoffirstorder,[17]whichmakestheJacobiansingularitycriterionsufficientforthistaxonomytobecomprehensiveatallorders. ThebehaviorofasystemofODEscanbevisualizedthroughtheuseofaphaseportrait. Solutions[edit] Givenadifferentialequation F ( x , y , y ′ , … , y ( n ) ) = 0 {\displaystyleF\left(x,y,y',\ldots,y^{(n)}\right)=0} afunctionu:I⊂R→R,whereIisaninterval,iscalledasolutionorintegralcurveforF,ifuisn-timesdifferentiableonI,and F ( x , u , u ′ ,   … ,   u ( n ) ) = 0 x ∈ I . {\displaystyleF(x,u,u',\\ldots,\u^{(n)})=0\quadx\inI.} Giventwosolutionsu:J⊂R→Randv:I⊂R→R,uiscalledanextensionofvifI⊂Jand u ( x ) = v ( x ) x ∈ I . {\displaystyleu(x)=v(x)\quadx\inI.\,} Asolutionthathasnoextensioniscalledamaximalsolution.AsolutiondefinedonallofRiscalledaglobalsolution. Ageneralsolutionofannth-orderequationisasolutioncontainingnarbitraryindependentconstantsofintegration.Aparticularsolutionisderivedfromthegeneralsolutionbysettingtheconstantstoparticularvalues,oftenchosentofulfillset'initialconditionsorboundaryconditions'.[18]Asingularsolutionisasolutionthatcannotbeobtainedbyassigningdefinitevaluestothearbitraryconstantsinthegeneralsolution.[19] InthecontextoflinearODE,theterminologyparticularsolutioncanalsorefertoanysolutionoftheODE(notnecessarilysatisfyingtheinitialconditions),whichisthenaddedtothehomogeneoussolution(ageneralsolutionofthehomogeneousODE),whichthenformsageneralsolutionoftheoriginalODE.Thisistheterminologyusedintheguessingmethodsectioninthisarticle,andisfrequentlyusedwhendiscussingthemethodofundeterminedcoefficientsandvariationofparameters. SolutionsofFiniteDuration[edit] Fornon-linearautonomousODEsitispossibleundersomeconditionstodevelopsolutionsoffiniteduration,[20]meaningherethatfromitsowndynamics,thesystemwillreachthevaluezeroatanendingtimeandstaysthereinzeroforeverafter.Thesefinite-durationsolutionscan'tbeanalyticalfunctionsonthewholerealline,andbecausetheywillbeingnon-Lipschitzfunctionsattheirendingtime,theydon´tstanduniquenessofsolutionsofLipschitzdifferentialequations. Asexample,theequation: y ′ = − sgn ( y ) | y | , y ( 0 ) = 1 {\displaystyley'=-{\text{sgn}}(y){\sqrt{|y|}},\,\,y(0)=1} Admitsthefinitedurationsolution: y ( x ) = 1 4 ( 1 − x 2 + | 1 − x 2 | ) 2 {\displaystyley(x)={\frac{1}{4}}\left(1-{\frac{x}{2}}+\left|1-{\frac{x}{2}}\right|\right)^{2}} Theories[edit] Singularsolutions[edit] ThetheoryofsingularsolutionsofordinaryandpartialdifferentialequationswasasubjectofresearchfromthetimeofLeibniz,butonlysincethemiddleofthenineteenthcenturyhasitreceivedspecialattention.Avaluablebutlittle-knownworkonthesubjectisthatofHoutain(1854).Darboux(from1873)wasaleaderinthetheory,andinthegeometricinterpretationofthesesolutionsheopenedafieldworkedbyvariouswriters,notablyCasoratiandCayley.Tothelatterisdue(1872)thetheoryofsingularsolutionsofdifferentialequationsofthefirstorderasacceptedcirca1900. Reductiontoquadratures[edit] Theprimitiveattemptindealingwithdifferentialequationshadinviewareductiontoquadratures.Asithadbeenthehopeofeighteenth-centuryalgebraiststofindamethodforsolvingthegeneralequationofthenthdegree,soitwasthehopeofanalyststofindageneralmethodforintegratinganydifferentialequation.Gauss(1799)showed,however,thatcomplexdifferentialequationsrequirecomplexnumbers.Hence,analystsbegantosubstitutethestudyoffunctions,thusopeninganewandfertilefield.Cauchywasthefirsttoappreciatetheimportanceofthisview.Thereafter,therealquestionwasnolongerwhetherasolutionispossiblebymeansofknownfunctionsortheirintegrals,butwhetheragivendifferentialequationsufficesforthedefinitionofafunctionoftheindependentvariableorvariables,and,ifso,whatarethecharacteristicproperties. Fuchsiantheory[edit] Mainarticle:Frobeniusmethod TwomemoirsbyFuchs[21]inspiredanovelapproach,subsequentlyelaboratedbyThoméandFrobenius.Colletwasaprominentcontributorbeginningin1869.Hismethodforintegratinganon-linearsystemwascommunicatedtoBertrandin1868.Clebsch(1873)attackedthetheoryalonglinesparalleltothoseinhistheoryofAbelianintegrals.Asthelattercanbeclassifiedaccordingtothepropertiesofthefundamentalcurvethatremainsunchangedunderarationaltransformation,Clebschproposedtoclassifythetranscendentfunctionsdefinedbydifferentialequationsaccordingtotheinvariantpropertiesofthecorrespondingsurfacesf=0underrationalone-to-onetransformations. Lie'stheory[edit] From1870,SophusLie'sworkputthetheoryofdifferentialequationsonabetterfoundation.Heshowedthattheintegrationtheoriesoftheoldermathematicianscan,usingLiegroups,bereferredtoacommonsource,andthatordinarydifferentialequationsthatadmitthesameinfinitesimaltransformationspresentcomparableintegrationdifficulties.Healsoemphasizedthesubjectoftransformationsofcontact. Lie'sgrouptheoryofdifferentialequationshasbeencertified,namely:(1)thatitunifiesthemanyadhocmethodsknownforsolvingdifferentialequations,and(2)thatitprovidespowerfulnewwaystofindsolutions.Thetheoryhasapplicationstobothordinaryandpartialdifferentialequations.[22] Ageneralsolutionapproachusesthesymmetrypropertyofdifferentialequations,thecontinuousinfinitesimaltransformationsofsolutionstosolutions(Lietheory).Continuousgrouptheory,Liealgebras,anddifferentialgeometryareusedtounderstandthestructureoflinearandnon-linear(partial)differentialequationsforgeneratingintegrableequations,tofinditsLaxpairs,recursionoperators,Bäcklundtransform,andfinallyfindingexactanalyticsolutionstoDE. Symmetrymethodshavebeenappliedtodifferentialequationsthatariseinmathematics,physics,engineering,andotherdisciplines. Sturm–Liouvilletheory[edit] Mainarticle:Sturm–Liouvilletheory Sturm–Liouvilletheoryisatheoryofaspecialtypeofsecondorderlinearordinarydifferentialequation.Theirsolutionsarebasedoneigenvaluesandcorrespondingeigenfunctionsoflinearoperatorsdefinedviasecond-orderhomogeneouslinearequations.TheproblemsareidentifiedasSturm-LiouvilleProblems(SLP)andarenamedafterJ.C.F.SturmandJ.Liouville,whostudiedtheminthemid-1800s.SLPshaveaninfinitenumberofeigenvalues,andthecorrespondingeigenfunctionsformacomplete,orthogonalset,whichmakesorthogonalexpansionspossible.Thisisakeyideainappliedmathematics,physics,andengineering.[23]SLPsarealsousefulintheanalysisofcertainpartialdifferentialequations. Existenceanduniquenessofsolutions[edit] ThereareseveraltheoremsthatestablishexistenceanduniquenessofsolutionstoinitialvalueproblemsinvolvingODEsbothlocallyandglobally.Thetwomaintheoremsare Theorem Assumption Conclusion Peanoexistencetheorem Fcontinuous localexistenceonly Picard–Lindelöftheorem FLipschitzcontinuous localexistenceanduniqueness Intheirbasicformbothofthesetheoremsonlyguaranteelocalresults,thoughthelattercanbeextendedtogiveaglobalresult,forexample,iftheconditionsofGrönwall'sinequalityaremet. Also,uniquenesstheoremsliketheLipschitzoneabovedonotapplytoDAEsystems,whichmayhavemultiplesolutionsstemmingfromtheir(non-linear)algebraicpartalone.[24] Localexistenceanduniquenesstheoremsimplified[edit] Thetheoremcanbestatedsimplyasfollows.[25]Fortheequationandinitialvalueproblem: y ′ = F ( x , y ) , y 0 = y ( x 0 ) {\displaystyley'=F(x,y)\,,\quady_{0}=y(x_{0})} ifFand∂F/∂yarecontinuousinaclosedrectangle R = [ x 0 − a , x 0 + a ] × [ y 0 − b , y 0 + b ] {\displaystyleR=[x_{0}-a,x_{0}+a]\times[y_{0}-b,y_{0}+b]} inthex-yplane,whereaandbarereal(symbolically:a,b∈R)and×denotestheCartesianproduct,squarebracketsdenoteclosedintervals,thenthereisaninterval I = [ x 0 − h , x 0 + h ] ⊂ [ x 0 − a , x 0 + a ] {\displaystyleI=[x_{0}-h,x_{0}+h]\subset[x_{0}-a,x_{0}+a]} forsomeh∈Rwherethesolutiontotheaboveequationandinitialvalueproblemcanbefound.Thatis,thereisasolutionanditisunique.SincethereisnorestrictiononFtobelinear,thisappliestonon-linearequationsthattaketheformF(x,y),anditcanalsobeappliedtosystemsofequations. Globaluniquenessandmaximumdomainofsolution[edit] WhenthehypothesesofthePicard–Lindelöftheoremaresatisfied,thenlocalexistenceanduniquenesscanbeextendedtoaglobalresult.Moreprecisely:[26] Foreachinitialcondition(x0,y0)thereexistsauniquemaximum(possiblyinfinite)openinterval I max = ( x − , x + ) , x ± ∈ R ∪ { ± ∞ } , x 0 ∈ I max {\displaystyleI_{\max}=(x_{-},x_{+}),x_{\pm}\in\mathbb{R}\cup\{\pm\infty\},x_{0}\inI_{\max}} suchthatanysolutionthatsatisfiesthisinitialconditionisarestrictionofthesolutionthatsatisfiesthisinitialconditionwithdomain I max {\displaystyleI_{\max}} . Inthecasethat x ± ≠ ± ∞ {\displaystylex_{\pm}\neq\pm\infty} ,thereareexactlytwopossibilities explosioninfinitetime: lim sup x → x ± ‖ y ( x ) ‖ → ∞ {\displaystyle\limsup_{x\tox_{\pm}}\|y(x)\|\to\infty} leavesdomainofdefinition: lim x → x ± y ( x )   ∈ ∂ Ω ¯ {\displaystyle\lim_{x\tox_{\pm}}y(x)\\in\partial{\bar{\Omega}}} whereΩistheopensetinwhichFisdefined,and ∂ Ω ¯ {\displaystyle\partial{\bar{\Omega}}} isitsboundary. Notethatthemaximumdomainofthesolution isalwaysaninterval(tohaveuniqueness) maybesmallerthan R {\displaystyle\mathbb{R}} maydependonthespecificchoiceof(x0,y0). Example. y ′ = y 2 {\displaystyley'=y^{2}} ThismeansthatF(x,y)=y2,whichisC1andthereforelocallyLipschitzcontinuous,satisfyingthePicard–Lindelöftheorem. Eveninsuchasimplesetting,themaximumdomainofsolutioncannotbeall R {\displaystyle\mathbb{R}} sincethesolutionis y ( x ) = y 0 ( x 0 − x ) y 0 + 1 {\displaystyley(x)={\frac{y_{0}}{(x_{0}-x)y_{0}+1}}} whichhasmaximumdomain: { R y 0 = 0 ( − ∞ , x 0 + 1 y 0 ) y 0 > 0 ( x 0 + 1 y 0 , + ∞ ) y 0 < 0 {\displaystyle{\begin{cases}\mathbb{R}&y_{0}=0\\[4pt]\left(-\infty,x_{0}+{\frac{1}{y_{0}}}\right)&y_{0}>0\\[4pt]\left(x_{0}+{\frac{1}{y_{0}}},+\infty\right)&y_{0}<0\end{cases}}} Thisshowsclearlythatthemaximumintervalmaydependontheinitialconditions.Thedomainofycouldbetakenasbeing R ∖ ( x 0 + 1 / y 0 ) , {\displaystyle\mathbb{R}\setminus(x_{0}+1/y_{0}),} butthiswouldleadtoadomainthatisnotaninterval,sothatthesideoppositetotheinitialconditionwouldbedisconnectedfromtheinitialcondition,andthereforenotuniquelydeterminedbyit. Themaximumdomainisnot R {\displaystyle\mathbb{R}} because lim x → x ± ‖ y ( x ) ‖ → ∞ , {\displaystyle\lim_{x\tox_{\pm}}\|y(x)\|\to\infty,} whichisoneofthetwopossiblecasesaccordingtotheabovetheorem. Reductionoforder[edit] Differentialequationscanusuallybesolvedmoreeasilyiftheorderoftheequationcanbereduced. Reductiontoafirst-ordersystem[edit] Anyexplicitdifferentialequationofordern, F ( x , y , y ′ , y ″ ,   … ,   y ( n − 1 ) ) = y ( n ) {\displaystyleF\left(x,y,y',y'',\\ldots,\y^{(n-1)}\right)=y^{(n)}} canbewrittenasasystemofnfirst-orderdifferentialequationsbydefininganewfamilyofunknownfunctions y i = y ( i − 1 ) . {\displaystyley_{i}=y^{(i-1)}.\!} fori=1,2,...,n.Then-dimensionalsystemoffirst-ordercoupleddifferentialequationsisthen y 1 ′ = y 2 y 2 ′ = y 3 ⋮ y n − 1 ′ = y n y n ′ = F ( x , y 1 , … , y n ) . {\displaystyle{\begin{array}{rcl}y_{1}'&=&y_{2}\\y_{2}'&=&y_{3}\\&\vdots&\\y_{n-1}'&=&y_{n}\\y_{n}'&=&F(x,y_{1},\ldots,y_{n}).\end{array}}} morecompactlyinvectornotation: y ′ = F ( x , y ) {\displaystyle\mathbf{y}'=\mathbf{F}(x,\mathbf{y})} where y = ( y 1 , … , y n ) , F ( x , y 1 , … , y n ) = ( y 2 , … , y n , F ( x , y 1 , … , y n ) ) . {\displaystyle\mathbf{y}=(y_{1},\ldots,y_{n}),\quad\mathbf{F}(x,y_{1},\ldots,y_{n})=(y_{2},\ldots,y_{n},F(x,y_{1},\ldots,y_{n})).} Summaryofexactsolutions[edit] Somedifferentialequationshavesolutionsthatcanbewritteninanexactandclosedform.Severalimportantclassesaregivenhere. Inthetablebelow,P(x),Q(x),P(y),Q(y),andM(x,y),N(x,y)areanyintegrablefunctionsofx,y,andbandcarerealgivenconstants,andC1,C2,...arearbitraryconstants(complexingeneral).Thedifferentialequationsareintheirequivalentandalternativeformsthatleadtothesolutionthroughintegration. Intheintegralsolutions,λandεaredummyvariablesofintegration(thecontinuumanaloguesofindicesinsummation),andthenotation∫xF(λ)dλjustmeanstointegrateF(λ)withrespecttoλ,thenaftertheintegrationsubstituteλ=x,withoutaddingconstants(explicitlystated). Separableequations[edit] Differentialequation Solutionmethod Generalsolution First-order,separableinxandy(generalcase,seebelowforspecialcases)[27] P 1 ( x ) Q 1 ( y ) + P 2 ( x ) Q 2 ( y ) d y d x = 0 P 1 ( x ) Q 1 ( y ) d x + P 2 ( x ) Q 2 ( y ) d y = 0 {\displaystyle{\begin{aligned}P_{1}(x)Q_{1}(y)+P_{2}(x)Q_{2}(y)\,{\frac{dy}{dx}}&=0\\P_{1}(x)Q_{1}(y)\,dx+P_{2}(x)Q_{2}(y)\,dy&=0\end{aligned}}} Separationofvariables(dividebyP2Q1). ∫ x P 1 ( λ ) P 2 ( λ ) d λ + ∫ y Q 2 ( λ ) Q 1 ( λ ) d λ = C {\displaystyle\int^{x}{\frac{P_{1}(\lambda)}{P_{2}(\lambda)}}\,d\lambda+\int^{y}{\frac{Q_{2}(\lambda)}{Q_{1}(\lambda)}}\,d\lambda=C} First-order,separableinx[25] d y d x = F ( x ) d y = F ( x ) d x {\displaystyle{\begin{aligned}{\frac{dy}{dx}}&=F(x)\\dy&=F(x)\,dx\end{aligned}}} Directintegration. y = ∫ x F ( λ ) d λ + C {\displaystyley=\int^{x}F(\lambda)\,d\lambda+C} First-order,autonomous,separableiny[25] d y d x = F ( y ) d y = F ( y ) d x {\displaystyle{\begin{aligned}{\frac{dy}{dx}}&=F(y)\\dy&=F(y)\,dx\end{aligned}}} Separationofvariables(dividebyF). x = ∫ y d λ F ( λ ) + C {\displaystylex=\int^{y}{\frac{d\lambda}{F(\lambda)}}+C} First-order,separableinxandy[25] P ( y ) d y d x + Q ( x ) = 0 P ( y ) d y + Q ( x ) d x = 0 {\displaystyle{\begin{aligned}P(y){\frac{dy}{dx}}+Q(x)&=0\\P(y)\,dy+Q(x)\,dx&=0\end{aligned}}} Integratethroughout. ∫ y P ( λ ) d λ + ∫ x Q ( λ ) d λ = C {\displaystyle\int^{y}P(\lambda)\,d\lambda+\int^{x}Q(\lambda)\,d\lambda=C} Generalfirst-orderequations[edit] Differentialequation Solutionmethod Generalsolution First-order,homogeneous[25] d y d x = F ( y x ) {\displaystyle{\frac{dy}{dx}}=F\left({\frac{y}{x}}\right)} Sety=ux,thensolvebyseparationofvariablesinuandx. ln ⁡ ( C x ) = ∫ y / x d λ F ( λ ) − λ {\displaystyle\ln(Cx)=\int^{y/x}{\frac{d\lambda}{F(\lambda)-\lambda}}} First-order,separable[27] y M ( x y ) + x N ( x y ) d y d x = 0 y M ( x y ) d x + x N ( x y ) d y = 0 {\displaystyle{\begin{aligned}yM(xy)+xN(xy)\,{\frac{dy}{dx}}&=0\\yM(xy)\,dx+xN(xy)\,dy&=0\end{aligned}}} Separationofvariables(dividebyxy). ln ⁡ ( C x ) = ∫ x y N ( λ ) d λ λ [ N ( λ ) − M ( λ ) ] {\displaystyle\ln(Cx)=\int^{xy}{\frac{N(\lambda)\,d\lambda}{\lambda[N(\lambda)-M(\lambda)]}}} IfN=M,thesolutionisxy=C. Exactdifferential,first-order[25] M ( x , y ) d y d x + N ( x , y ) = 0 M ( x , y ) d y + N ( x , y ) d x = 0 {\displaystyle{\begin{aligned}M(x,y){\frac{dy}{dx}}+N(x,y)&=0\\M(x,y)\,dy+N(x,y)\,dx&=0\end{aligned}}} where ∂ M ∂ y = ∂ N ∂ x {\displaystyle{\frac{\partialM}{\partialy}}={\frac{\partialN}{\partialx}}} Integratethroughout. F ( x , y ) = ∫ x M ( λ , y ) d λ + ∫ y Y ( λ ) d λ = ∫ y N ( x , λ ) d λ + ∫ x X ( λ ) d λ = C {\displaystyle{\begin{aligned}F(x,y)&=\int^{x}M(\lambda,y)\,d\lambda+\int^{y}Y(\lambda)\,d\lambda\\&=\int^{y}N(x,\lambda)\,d\lambda+\int^{x}X(\lambda)\,d\lambda=C\end{aligned}}} where Y ( y ) = N ( x , y ) − ∂ ∂ y ∫ x M ( λ , y ) d λ {\displaystyleY(y)=N(x,y)-{\frac{\partial}{\partialy}}\int^{x}M(\lambda,y)\,d\lambda} and X ( x ) = M ( x , y ) − ∂ ∂ x ∫ y N ( x , λ ) d λ {\displaystyleX(x)=M(x,y)-{\frac{\partial}{\partialx}}\int^{y}N(x,\lambda)\,d\lambda} Inexactdifferential,first-order[25] M ( x , y ) d y d x + N ( x , y ) = 0 M ( x , y ) d y + N ( x , y ) d x = 0 {\displaystyle{\begin{aligned}M(x,y){\frac{dy}{dx}}+N(x,y)&=0\\M(x,y)\,dy+N(x,y)\,dx&=0\end{aligned}}} where ∂ M ∂ x ≠ ∂ N ∂ y {\displaystyle{\frac{\partialM}{\partialx}}\neq{\frac{\partialN}{\partialy}}} Integrationfactorμ(x,y)satisfying ∂ ( μ M ) ∂ y = ∂ ( μ N ) ∂ x {\displaystyle{\frac{\partial(\muM)}{\partialy}}={\frac{\partial(\muN)}{\partialx}}} Ifμ(x,y)canbefoundinasuitableway,then F ( x , y ) = ∫ x μ ( λ , y ) M ( λ , y ) d λ + ∫ y Y ( λ ) d λ = ∫ y μ ( x , λ ) N ( x , λ ) d λ + ∫ x X ( λ ) d λ = C {\displaystyle{\begin{aligned}F(x,y)=&\int^{x}\mu(\lambda,y)M(\lambda,y)\,d\lambda+\int^{y}Y(\lambda)\,d\lambda\\=&\int^{y}\mu(x,\lambda)N(x,\lambda)\,d\lambda+\int^{x}X(\lambda)\,d\lambda=C\end{aligned}}} where Y ( y ) = N ( x , y ) − ∂ ∂ y ∫ x μ ( λ , y ) M ( λ , y ) d λ {\displaystyleY(y)=N(x,y)-{\frac{\partial}{\partialy}}\int^{x}\mu(\lambda,y)M(\lambda,y)\,d\lambda} and X ( x ) = M ( x , y ) − ∂ ∂ x ∫ y μ ( x , λ ) N ( x , λ ) d λ {\displaystyleX(x)=M(x,y)-{\frac{\partial}{\partialx}}\int^{y}\mu(x,\lambda)N(x,\lambda)\,d\lambda} Generalsecond-orderequations[edit] Differentialequation Solutionmethod Generalsolution Second-order,autonomous[28] d 2 y d x 2 = F ( y ) {\displaystyle{\frac{d^{2}y}{dx^{2}}}=F(y)} Multiplybothsidesofequationby2dy/dx,substitute 2 d y d x d 2 y d x 2 = d d x ( d y d x ) 2 {\displaystyle2{\frac{dy}{dx}}{\frac{d^{2}y}{dx^{2}}}={\frac{d}{dx}}\left({\frac{dy}{dx}}\right)^{2}} ,thenintegratetwice. x = ± ∫ y d λ 2 ∫ λ F ( ε ) d ε + C 1 + C 2 {\displaystylex=\pm\int^{y}{\frac{d\lambda}{\sqrt{2\int^{\lambda}F(\varepsilon)\,d\varepsilon+C_{1}}}}+C_{2}} Lineartothenthorderequations[edit] Differentialequation Solutionmethod Generalsolution First-order,linear,inhomogeneous,functioncoefficients[25] d y d x + P ( x ) y = Q ( x ) {\displaystyle{\frac{dy}{dx}}+P(x)y=Q(x)} Integratingfactor: e ∫ x P ( λ ) d λ . {\displaystylee^{\int^{x}P(\lambda)\,d\lambda}.} Armourformula: y = e − ∫ x P ( λ ) d λ [ ∫ x e ∫ λ P ( ε ) d ε Q ( λ ) d λ + C ] {\displaystyley=e^{-\int^{x}P(\lambda)\,d\lambda}\left[\int^{x}e^{\int^{\lambda}P(\varepsilon)\,d\varepsilon}Q(\lambda)\,d\lambda+C\right]} Second-order,linear,inhomogeneous,functioncoefficients d 2 y d x 2 + 2 p ( x ) d y d x + ( p ( x ) 2 + p ′ ( x ) ) y = q ( x ) {\displaystyle{\frac{d^{2}y}{dx^{2}}}+2p(x){\frac{dy}{dx}}+\left(p(x)^{2}+p'(x)\right)y=q(x)} Integratingfactor: e ∫ x P ( λ ) d λ {\displaystylee^{\int^{x}P(\lambda)\,d\lambda}} y = e − ∫ x P ( λ ) d λ [ ∫ x ( ∫ ξ e ∫ λ P ( ε ) d ε Q ( λ ) d λ ) d ξ + C 1 x + C 2 ] {\displaystyley=e^{-\int^{x}P(\lambda)\,d\lambda}\left[\int^{x}\left(\int^{\xi}e^{\int^{\lambda}P(\varepsilon)\,d\varepsilon}Q(\lambda)\,d\lambda\right)d\xi+C_{1}x+C_{2}\right]} Second-order,linear,inhomogeneous,constantcoefficients[29] d 2 y d x 2 + b d y d x + c y = r ( x ) {\displaystyle{\frac{d^{2}y}{dx^{2}}}+b{\frac{dy}{dx}}+cy=r(x)} Complementaryfunctionyc:assumeyc=eαx,substituteandsolvepolynomialinα,tofindthelinearlyindependentfunctions e α j x {\displaystylee^{\alpha_{j}x}} . Particularintegralyp:ingeneralthemethodofvariationofparameters,thoughforverysimpler(x)inspectionmaywork.[25] y = y c + y p {\displaystyley=y_{c}+y_{p}} Ifb2>4c,then y c = C 1 e − x 2 ( b + b 2 − 4 c ) + C 2 e − x 2 ( b − b 2 − 4 c ) {\displaystyley_{c}=C_{1}e^{-{\frac{x}{2}}\,\left(b+{\sqrt{b^{2}-4c}}\right)}+C_{2}e^{-{\frac{x}{2}}\,\left(b-{\sqrt{b^{2}-4c}}\right)}} Ifb2=4c,then y c = ( C 1 x + C 2 ) e − b x 2 {\displaystyley_{c}=(C_{1}x+C_{2})e^{-{\frac{bx}{2}}}} Ifb2<4c,then y c = e − b x 2 [ C 1 sin ⁡ ( x 4 c − b 2 2 ) + C 2 cos ⁡ ( x 4 c − b 2 2 ) ] {\displaystyley_{c}=e^{-{\frac{bx}{2}}}\left[C_{1}\sin\left(x\,{\frac{\sqrt{4c-b^{2}}}{2}}\right)+C_{2}\cos\left(x\,{\frac{\sqrt{4c-b^{2}}}{2}}\right)\right]} nth-order,linear,inhomogeneous,constantcoefficients[29] ∑ j = 0 n b j d j y d x j = r ( x ) {\displaystyle\sum_{j=0}^{n}b_{j}{\frac{d^{j}y}{dx^{j}}}=r(x)} Complementaryfunctionyc:assumeyc=eαx,substituteandsolvepolynomialinα,tofindthelinearlyindependentfunctions e α j x {\displaystylee^{\alpha_{j}x}} . Particularintegralyp:ingeneralthemethodofvariationofparameters,thoughforverysimpler(x)inspectionmaywork.[25] y = y c + y p {\displaystyley=y_{c}+y_{p}} Sinceαjarethesolutionsofthepolynomialofdegreen: ∏ j = 1 n ( α − α j ) = 0 {\textstyle\prod_{j=1}^{n}(\alpha-\alpha_{j})=0} ,then: forαjalldifferent, y c = ∑ j = 1 n C j e α j x {\displaystyley_{c}=\sum_{j=1}^{n}C_{j}e^{\alpha_{j}x}} foreachrootαjrepeatedkjtimes, y c = ∑ j = 1 n ( ∑ ℓ = 1 k j C j , ℓ x ℓ − 1 ) e α j x {\displaystyley_{c}=\sum_{j=1}^{n}\left(\sum_{\ell=1}^{k_{j}}C_{j,\ell}x^{\ell-1}\right)e^{\alpha_{j}x}} forsomeαjcomplex,thensettingα=χj+iγj,andusingEuler'sformula,allowssometermsinthepreviousresultstobewrittenintheform C j e α j x = C j e χ j x cos ⁡ ( γ j x + φ j ) {\displaystyleC_{j}e^{\alpha_{j}x}=C_{j}e^{\chi_{j}x}\cos(\gamma_{j}x+\varphi_{j})} whereϕjisanarbitraryconstant(phaseshift). Theguessingmethod[edit] Thissectiondoesnotciteanysources.Pleasehelpimprovethissectionbyaddingcitationstoreliablesources.Unsourcedmaterialmaybechallengedandremoved.(January2020)(Learnhowandwhentoremovethistemplatemessage) WhenallothermethodsforsolvinganODEfail,orinthecaseswherewehavesomeintuitionaboutwhatthesolutiontoaDEmightlooklike,itissometimespossibletosolveaDEsimplybyguessingthesolutionandvalidatingitiscorrect.Tousethismethod,wesimplyguessasolutiontothedifferentialequation,andthenplugthesolutionintothedifferentialequationtovalidateifitsatisfiestheequation.IfitdoesthenwehaveaparticularsolutiontotheDE,otherwisewestartoveragainandtryanotherguess.ForinstancewecouldguessthatthesolutiontoaDEhastheform: y = A e α t {\displaystyley=Ae^{\alphat}} sincethisisaverycommonsolutionthatphysicallybehavesinasinusoidalway. InthecaseofafirstorderODEthatisnon-homogeneousweneedtofirstfindaDEsolutiontothehomogeneousportionoftheDE,otherwiseknownasthecharacteristicequation,andthenfindasolutiontotheentirenon-homogeneousequationbyguessing.Finally,weaddbothofthesesolutionstogethertoobtainthetotalsolutiontotheODE,thatis: totalsolution = homogeneoussolution + particularsolution {\displaystyle{\text{totalsolution}}={\text{homogeneoussolution}}+{\text{particularsolution}}} SoftwareforODEsolving[edit] Maxima,anopen-sourcecomputeralgebrasystem. COPASI,afree(ArtisticLicense2.0)softwarepackagefortheintegrationandanalysisofODEs. MATLAB,atechnicalcomputingapplication(MATrixLABoratory) GNUOctave,ahigh-levellanguage,primarilyintendedfornumericalcomputations. Scilab,anopensourceapplicationfornumericalcomputation. Maple,aproprietaryapplicationforsymboliccalculations. Mathematica,aproprietaryapplicationprimarilyintendedforsymboliccalculations. SymPy,aPythonpackagethatcansolveODEssymbolically Julia(programminglanguage),ahigh-levellanguageprimarilyintendedfornumericalcomputations. SageMath,anopen-sourceapplicationthatusesaPython-likesyntaxwithawiderangeofcapabilitiesspanningseveralbranchesofmathematics. SciPy,aPythonpackagethatincludesanODEintegrationmodule. Chebfun,anopen-sourcepackage,writteninMATLAB,forcomputingwithfunctionsto15-digitaccuracy. GNUR,anopensourcecomputationalenvironmentprimarilyintendedforstatistics,whichincludespackagesforODEsolving. Seealso[edit] Boundaryvalueproblem Examplesofdifferentialequations Laplacetransformappliedtodifferentialequations Listofdynamicalsystemsanddifferentialequationstopics Matrixdifferentialequation Methodofundeterminedcoefficients Recurrencerelation Notes[edit] ^DennisG.Zill(15March2012).AFirstCourseinDifferentialEquationswithModelingApplications.CengageLearning.ISBN 978-1-285-40110-2.Archivedfromtheoriginalon17January2020.Retrieved11July2019. ^"Whatistheoriginoftheterm"ordinarydifferentialequations"?".hsm.stackexchange.com.StackExchange.Retrieved2016-07-28. ^MathematicsforChemists,D.M.Hirst,MacmillanPress,1976,(NoISBN)SBN:333-18172-7 ^Kreyszig(1972,p. 64) ^Simmons(1972,pp. 1,2) ^Halliday&Resnick(1977,p. 78) ^Tipler(1991,pp. 78–83) ^abHarper(1976,p. 127) ^Kreyszig(1972,p. 2) ^Simmons(1972,p. 3) ^abKreyszig(1972,p. 24) ^Simmons(1972,p. 47) ^Harper(1976,p. 128) ^Kreyszig(1972,p. 12) ^Ascher(1998,p. 12)harvtxterror:notarget:CITEREFAscher1998(help) ^AchimIlchmann;TimoReis(2014).SurveysinDifferential-AlgebraicEquationsII.Springer.pp. 104–105.ISBN 978-3-319-11050-9. ^Ascher(1998,p. 5)harvtxterror:notarget:CITEREFAscher1998(help) ^Kreyszig(1972,p. 78) ^Kreyszig(1972,p. 4) ^VardiaT.Haimo(1985)."FiniteTimeDifferentialEquations".198524thIEEEConferenceonDecisionandControl.pp. 1729–1733.doi:10.1109/CDC.1985.268832.S2CID 45426376. ^Crelle,1866,1868 ^Lawrence(1999,p. 9)harvtxterror:notarget:CITEREFLawrence1999(help) ^Logan,J.(2013).Appliedmathematics(Fourthed.). ^Ascher(1998,p. 13)harvtxterror:notarget:CITEREFAscher1998(help) ^abcdefghijElementaryDifferentialEquationsandBoundaryValueProblems(4thEdition),W.E.Boyce,R.C.Diprima,WileyInternational,JohnWiley&Sons,1986,ISBN 0-471-83824-1 ^Boscain;Chitour2011,p. 21 ^abMathematicalHandbookofFormulasandTables(3rdedition),S.Lipschutz,M.R.Spiegel,J.Liu,Schaum'sOutlineSeries,2009,ISC_2N978-0-07-154855-7 ^FurtherElementaryAnalysis,R.Porter,G.Bell&Sons(London),1978,ISBN 0-7135-1594-5 ^abMathematicalmethodsforphysicsandengineering,K.F.Riley,M.P.Hobson,S.J.Bence,CambridgeUniversityPress,2010,ISC_2N978-0-521-86153-3 References[edit] Halliday,David;Resnick,Robert(1977),Physics(3rd ed.),NewYork:Wiley,ISBN 0-471-71716-9 Harper,Charlie(1976),IntroductiontoMathematicalPhysics,NewJersey:Prentice-Hall,ISBN 0-13-487538-9 Kreyszig,Erwin(1972),AdvancedEngineeringMathematics(3rd ed.),NewYork:Wiley,ISBN 0-471-50728-8. Polyanin,A.D.andV.F.Zaitsev,HandbookofExactSolutionsforOrdinaryDifferentialEquations(2ndedition),Chapman&Hall/CRCPress,BocaRaton,2003.ISBN 1-58488-297-2 Simmons,GeorgeF.(1972),DifferentialEquationswithApplicationsandHistoricalNotes,NewYork:McGraw-Hill,LCCN 75173716 Tipler,PaulA.(1991),PhysicsforScientistsandEngineers:Extendedversion(3rd ed.),NewYork:WorthPublishers,ISBN 0-87901-432-6 Boscain,Ugo;Chitour,Yacine(2011),Introductionàl'automatique(PDF)(inFrench) Dresner,Lawrence(1999),ApplicationsofLie'sTheoryofOrdinaryandPartialDifferentialEquations,BristolandPhiladelphia:InstituteofPhysicsPublishing,ISBN 978-0750305303 Ascher,Uri;Petzold,Linda(1998),ComputerMethodsforOrdinaryDifferentialEquationsandDifferential-AlgebraicEquations,SIAM,ISBN 978-1-61197-139-2 Bibliography[edit] Coddington,EarlA.;Levinson,Norman(1955).TheoryofOrdinaryDifferentialEquations.NewYork:McGraw-Hill. Hartman,Philip(2002)[1964],Ordinarydifferentialequations,ClassicsinAppliedMathematics,vol. 38,Philadelphia:SocietyforIndustrialandAppliedMathematics,doi:10.1137/1.9780898719222,ISBN 978-0-89871-510-1,MR 1929104 W.Johnson,ATreatiseonOrdinaryandPartialDifferentialEquations,JohnWileyandSons,1913,inUniversityofMichiganHistoricalMathCollection Ince,EdwardL.(1944)[1926],OrdinaryDifferentialEquations,DoverPublications,NewYork,ISBN 978-0-486-60349-0,MR 0010757 WitoldHurewicz,LecturesonOrdinaryDifferentialEquations,DoverPublications,ISBN 0-486-49510-8 Ibragimov,NailH.(1993).CRCHandbookofLieGroupAnalysisofDifferentialEquationsVol.1-3.Providence:CRC-Press.ISBN 0-8493-4488-3.. Teschl,Gerald(2012).OrdinaryDifferentialEquationsandDynamicalSystems.Providence:AmericanMathematicalSociety.ISBN 978-0-8218-8328-0. A.D.Polyanin,V.F.Zaitsev,andA.Moussiaux,HandbookofFirstOrderPartialDifferentialEquations,Taylor&Francis,London,2002.ISBN 0-415-27267-X D.Zwillinger,HandbookofDifferentialEquations(3rdedition),AcademicPress,Boston,1997. Externallinks[edit] Wikibookshasabookonthetopicof:Calculus/Ordinarydifferentialequations WikimediaCommonshasmediarelatedtoOrdinarydifferentialequations. "Differentialequation,ordinary",EncyclopediaofMathematics,EMSPress,2001[1994] EqWorld:TheWorldofMathematicalEquations,containingalistofordinarydifferentialequationswiththeirsolutions. OnlineNotes/DifferentialEquationsbyPaulDawkins,LamarUniversity. DifferentialEquations,S.O.S.Mathematics. AprimeronanalyticalsolutionofdifferentialequationsfromtheHolisticNumericalMethodsInstitute,UniversityofSouthFlorida. OrdinaryDifferentialEquationsandDynamicalSystemslecturenotesbyGeraldTeschl. NotesonDiffyQs:DifferentialEquationsforEngineersAnintroductorytextbookondifferentialequationsbyJiriLeblofUIUC. ModelingwithODEsusingScilabAtutorialonhowtomodelaphysicalsystemdescribedbyODEusingScilabstandardprogramminglanguagebyOpeneeringteam. SolvinganordinarydifferentialequationinWolfram|Alpha vteDifferentialequationsClassificationOperations Differentialoperator Notationfordifferentiation Ordinary Partial Differential-algebraic Integro-differential Fractional Linear Non-linear Holonomic Attributesofvariables Dependentandindependentvariables Homogeneous Nonhomogeneous Coupled Decoupled Order Degree Autonomous Exactdifferentialequation Onjetbundles Relationtoprocesses Difference(discreteanalogue) Stochastic Stochasticpartial Delay SolutionsExistence/uniqueness Picard–Lindelöftheorem Peanoexistencetheorem Carathéodory'sexistencetheorem Cauchy–Kowalevskitheorem Solutiontopics Wronskian Phaseportrait Phasespace Lyapunovstability Asymptoticstability Exponentialstability Rateofconvergence Seriessolutions Integralsolutions Numericalintegration Diracdeltafunction Solutionmethods Inspection Separationofvariables Methodofundeterminedcoefficients Variationofparameters Integratingfactor Integraltransforms Eulermethod Finitedifferencemethod Crank–Nicolsonmethod Runge–Kuttamethods Finiteelementmethod Finitevolumemethod Galerkinmethod Perturbationtheory Applications Listofnameddifferentialequations Mathematicians IsaacNewton GottfriedWilhelmLeibniz LeonhardEuler JacobBernoulli ÉmilePicard JózefMariaHoene-Wroński ErnstLindelöf RudolfLipschitz Joseph-LouisLagrange Augustin-LouisCauchy JohnCrank PhyllisNicolson CarlDavidTolméRunge MartinKutta SofyaKovalevskaya vteMajortopicsinmathematicalanalysis Calculus:Integration Differentiation Differentialequations(ordinary-partial-stochastic) Fundamentaltheoremofcalculus Calculusofvariations Vectorcalculus Tensorcalculus Matrixcalculus Listsofintegrals Tableofderivatives Realanalysis Complexanalysis Hypercomplexanalysis(quaternionicanalysis) Functionalanalysis Fourieranalysis Least-squaresspectralanalysis Harmonicanalysis P-adicanalysis(P-adicnumbers) Measuretheory Representationtheory Functions Continuousfunction Specialfunctions Limit Series Infinity Mathematicsportal Authoritycontrol:Nationallibraries Japan Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Ordinary_differential_equation&oldid=1086629337" Categories:DifferentialcalculusOrdinarydifferentialequationsDifferentialequationsHiddencategories:HarvandSfnno-targeterrorsArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataAllarticleswithunsourcedstatementsArticleswithunsourcedstatementsfromDecember2014ArticlesneedingadditionalreferencesfromJanuary2020AllarticlesneedingadditionalreferencesCS1French-languagesources(fr)CommonscategorylinkisonWikidataArticleswithNDLidentifiers Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommonsWikiversity Languages العربيةAsturianuAzərbaycancaБашҡортсаБългарскиCatalàЧӑвашлаČeštinaDeutschEestiΕλληνικάEspañolEsperantoفارسیFrançaisGalego한국어Հայերենहिन्दीBahasaIndonesiaItalianoעבריתBahasaMelayuМонгол日本語PolskiPortuguêsRomânăРусскийScotsසිංහලSimpleEnglishSlovenčinaСрпски/srpskiSvenskaTagalogதமிழ்TürkçeУкраїнськаTiếngViệt粵語中文 Editlinks



請為這篇文章評分?