Caenorhabditis elegans as a Model for Microbiome Research

文章推薦指數: 80 %
投票人數:10人

The nematode Caenorhabditis elegans is used as a central model system across biological disciplines. Surprisingly, almost all research with ... DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Supplementaldata totalviews ViewArticleImpact SHAREON RobertBrucker RowlandInstitute,HarvardUniversity,UnitedStates MarkJ.Mandel UniversityofWisconsin-Madison,UnitedStates DavidW.Waite MinistryforPrimaryIndustries,NewZealand Theeditorandreviewer'saffiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract Introduction AuthorContributions ConflictofInterestStatement Acknowledgments SupplementaryMaterial References Opensupplementaldata Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex Checkforupdates Peoplealsolookedat HYPOTHESISANDTHEORYarticle Front.Microbiol.,23March2017Sec.MicrobialSymbioses https://doi.org/10.3389/fmicb.2017.00485 CaenorhabditiselegansasaModelforMicrobiomeResearch FanZhang1†,MaureenBerg2†,KatjaDierking3,Marie-AnneFélix4,MichaelShapira2*‡,BuckS.Samuel1*‡andHinrichSchulenburg3*‡ 1AlkekCenterforMetagenomicsandMicrobiomeResearch,BaylorCollegeofMedicine,Houston,TX,USA 2DepartmentofIntegrativeBiology,UniversityofCalifornia,Berkeley,Berkeley,CA,USA 3ZoologicalInstitute,Christian-AlbrechtsUniversityKiel,Kiel,Germany 4CentreNationaldelaRechercheScientifique,InstitutdeBiologiedel'EcoleNormaleSupérieure,InstitutNationaldelaSantéetdelaRechercheMédicale,ENS,PSLResearchUniversity,Paris,France ThenematodeCaenorhabditiselegansisusedasacentralmodelsystemacrossbiologicaldisciplines.Surprisingly,almostallresearchwiththiswormisperformedintheabsenceofitsnativemicrobiome,possiblyaffectinggeneralityoftheobtainedresults.Infact,theC.elegansmicrobiomehadbeenunknownuntilrecently.ThisreviewbringstogetherresultsfromthefirstthreestudiesonC.elegansmicrobiomes,allpublishedin2016.Meta-analysisofthedatademonstratesaconsiderableconservationinthecompositionofthemicrobialcommunities,despitethedistinctgeographicalsampleorigins,studyapproaches,labsinvolvedandperturbationsduringwormprocessing.TheC.elegansmicrobiomeisenrichedandinsomecasesselectivefordistinctphylotypescomparedtocorrespondingsubstratesamples(e.g.,rottingfruits,decomposingplantmatter,andcompostsoil).ThedominantbacterialgroupsincludeseveralGammaproteobacteria(Enterobacteriaceae,Pseudomonaceae,andXanthomonodaceae)andBacteroidetes(Sphingobacteriaceae,Weeksellaceae,Flavobacteriaceae).TheyareconsistentlyjoinedbyseveralrareputativekeystonetaxalikeAcetobacteriaceae.Thebacteriaareabletoenhancegrowthofnematodepopulations,aswellasresistancetobioticandabioticstressors,includinghigh/lowtemperatures,osmoticstress,andpathogenicbacteriaandfungi.Theassociatedmicrobesthusappeartodisplayavarietyofeffectsbeneficialfortheworm.Thecharacteristicsoftheseeffects,theirrelevanceforC.elegansfitness,thepresenceofspecificco-adaptationsbetweenmicrobiomemembersandtheworm,andthemolecularunderpinningsofmicrobiome-hostinteractionsrepresentpromisingareasoffutureresearch,forwhichtheadvantagesofC.elegansasanexperimentalsystemshouldproveofparticularvalue. Introduction TheModelOrganismC.elegansHasBeenStudiedwithoutItsMicrobiome ThenematodeCaenorhabditiselegansisoneofthemainmodelspeciesinthelifesciences,yetasurprisinglylargepercentageofmorethan40%oftheworm'sgenerepertoireisstillwithoutknownfunction(Petersenetal.,2015).Alikelyreasonisthatthisnematodeisalmostexclusivelystudiedunderhighlyartificiallaboratoryconditions,usingasingleisolate,thecanonicalstrainN2,whichshowssubstantialadaptationstothelaboratoryenvironment(Sterkenetal.,2015).Thisstrainisusuallymaintainedinthepresenceofonlyasinglebacterium,itslaboratoryfoodEscherichiacolistrainOP50,whileothermicrobesareroutinelyremovedthroughableachingprotocol(Stiernagle,2006).CurrentstudieslargelyignorethenaturalecologyofC.elegans.Thespeciesshowsaworld-widedistribution,especiallyintemperateregions,whereitiscommonlyfoundinrottingplantmattersuchasdecomposingfruits(e.g.,FrézalandFélix,2015).Initsnaturalhabitat,thenematode'smicrobiome,heredefinedsensulato,includingagutmicrobialcommunityandpossiblyalsomicrobesphysicallyassociatedwiththeC.eleganssurface,islikelyakeydeterminantoflifehistory(Petersenetal.,2015),inanalogytothefundamentalroleofthemicrobiotainthebiologyofallmulticellularorganismsexaminedtodate(McFall-Ngaietal.,2013;e.g.,BoschandMiller,2016).Untilrecently,onlyveryfewstudieshadexploredtheinteractionsbetweenC.elegansandmicrobesfromitsenvironment(Grewal,1991;GrewalandWright,1992;VenetteandFerris,1998;AveryandShtonda,2003;Coolonetal.,2009;MacNeiletal.,2013;Montalvo-Katzetal.,2013). ThecurrentpaucityofmicrobiomestudiesinC.elegansisunexpected,becauseseveralcharacteristicsmakethisnematodeideallysuitedfortheexperimentalanalysisofhost-microbeinteractions.First,C.elegansishighlyamenabletogeneticmanipulation.Second,thepresenceofmicroorganismscanbeefficientlycontrolledusingthebleachingprotocol,whichisonlysurvivedbynematodeeggsbutnomicrobes,thusallowingcultivationofnematodesunderaxenicormonoxenicconditions(Stiernagle,2006).Third,thenematodeistransparentsothatmicrobecolonizationcanbeeasilymonitoredinwholeanimalsusingsimplemicroscopy.Fourth,severallifehistoryreadoutsrelevantforstudyingC.elegans-microbiomeinteractionsarewellestablished:e.g.,thoserelatedtostressresistance,lifespan,populationgrowth,andfecundity.Takentogether,C.elegansisapowerfulexperimentalmodeltosystematicallyanalyzetheeffectsofthemicrobiomeonthehostandviceversa.Duetotheseadvantages,C.eleganshasbeenusedextensivelyforstudyinghost-pathogeninteractions,includingmostlybacterialpathogens,butalsofungi,microsporidiaandviruses.Thisworkhasexpandedourunderstandingofmechanismofinnateimmunity(MeiselandKim,2014;CohenandTroemel,2015;Dierkingetal.,2016;EwbankandPujol,2016;KimandEwbank,2016).Morerecentworkaddressedthenematode'sinteractionswithputativecommensalandprobioticbacteria,suchasComamonas,Bacillussubtilis,Lactobacillus,andBifidobacterium,yieldingnewinsightsintothemechanismsbywhichbacteriaortheirmetabolitesinfluencesignaling,metabolismandlife-historyintheC.eleganshost(reviewedinClarkandHodgkin,2014). In2016,threeindependentstudiesprovidedthefirstdescriptionofthemicrobiomeofC.elegansanditsnaturalenvironment.Takingcomplementaryapproaches(Table1),theyexploredforthefirsttimetheinteractionsofC.eleganswithitsassociatedcommunityofmicrobes(Bergetal.,2016a;Dirksenetal.,2016;Samueletal.,2016).Theaimofthisreviewistoprovideanoverviewoftheunderstandingemergingfromthesethreestudies,andthepotentialofC.eleganstoserveasaninformative,experimentallyaccessiblenewmodelsystemforthedissectionofhost-microbiomeinteractions.Wesummarizethethreestudies,highlightinghowtheyhavestartedtodefinethenaturalmicrobiome,andcombinetheminanewmeta-analysisrevealingasignatureoftheC.elegansmicrobiomethatisrobusttothedistinctstudyapproachesused.Wediscussthelikelybiologicalfunctionsoftheworm'smicrobiomeandconcludebypointingtopromisingavenuesforfutureresearch,whichexploittheadvantagesofC.elegansasanexperimentalandgeneticmodelsystem. TABLE1 Table1.OverviewofthefirstthreesystematicanalysesoftheC.elegansmicrobiome. TheC.elegansNaturalMicrobiome TwoofthethreeC.elegansmicrobiomestudiesexaminedthenaturalmicrobialenvironmentsofwildC.elegans(Table1)(Dirksenetal.,2016;Samueletal.,2016).Usingdeepsequencingofthe16SrDNAV4regionbacterialcontentwasprofiledinanextensivesetofnaturalhabitats(substrates)ofC.elegansfromdifferentsamplingsites(NorthernGermany,Portugal,andFrance)—i.e.,compost,rottingapples,andotherfruits,rottingstems,plusvectorinvertebratesusedfordispersal.CharacterizedenvironmentalmicrobialcommunitieswerecomposedofthousandsofOperationalTaxonomicUnits(OTUs,representingbacterialtaxonomicgroups),demonstratingextensivediversity,dominatedbyProteobacteria,Bacteroidetes,Firmicutes,andActinobacteria.Oftheover250bacterialgenerathatwereidentifiedinrottingapples,forexample,themostabundantwereEnterobacteriaceaeandaceticacid-producingAcetobacteriaceae.Intriguingly,manybacterialphylotypeswereconsistentlyidentifiedfromquitedisparatewormsubstrates(e.g.,compost,snail,rottingappleandrottingorange),suggestingthatthesetaxaaregenerallypartofthenaturalenvironmentofC.elegans. Strikingly,themicrobialcompositionofsomeofthesehabitatscanpredictthesuccessofwildC.eleganspopulationslivinginthem.Samueletal.showedthatlargeproliferatingpopulationsofC.elegansweremorelikelypresentinrottingappleswithsimple,Alphaproteobacteria-rich(Acetobacteriaceae)communities,whilethosewithhighlevelsofBacteroidetesorpotentialpathogenstendedtocontainnon-proliferatingdauers(Samueletal.,2016).Inreconstructionexperimentsoftwocommunitieswithabout20speciesofnaturalbacteria,fastergrowthandreproductionofC.eleganswasalsoobservedwhencommunitycompositionresemblednaturalenvironmentswithproliferatingC.elegans(80%Proteobacteria,Alphaproteobacteria-rich),ratherthanthosecontainingnon-proliferatingdauers(40%Proteobacteria,enrichedforGammaproteobacteriaandBacteroidetes).Machine-learningbasedanalysessuggestthatspecificmicrobialtaxaaredrivingC.eleganspopulationgrowthaswell—i.e.,bothEnterobacteriaceaeandAcetobacteriaceaearepredictiveofproliferatingpopulations,whiletheconversewastrueforaBacteroidetes(Flavobacteriaceae),andtwoGammaproteobacteriafamilies(XanthomonadaceaeandPseudomonadaceae)(Samueletal.,2016).Asoutlinedbelow,variouscombinationsofpairsofdetrimentalandbeneficialbacteriafromthesefamiliessuggestthattheimpactoftheBacteroidetesisonlyobservedathighabundance(>80%ofthecommunity),andthatbothbeneficialandpathogenicbacteriacanexertinfluenceatlowabundance(Samueletal.,2016).Theseobservationssuggestthattheimpactofthemicrobiomeiscontextdependentandinvolvesacomplexinterplaybetweendifferentcommunitymembers. DirksenandcolleaguesadditionallyanalyzedthebacterialcommunitiesinnaturalC.elegansisolates(Table1,Figure1),inordertoexaminewhetherassociatedwormmicrobiomesdifferedfromtheircorrespondingsubstrates(Figure1)(Dirksenetal.,2016).Caenorhabditiselegansfromnaturalhabitatsharboredspecies-richbacterialcommunities,includingalargevarietyofdistincttaxonomicgroups(Dirksenetal.,2016).ThemostcommonOTUswereunclassifiedEnterobacteriaceaeandmembersofthegeneraPseudomonas,Stenotrophomonas,Ochrobactrum,andSphingomonas.Moreover,theidentifiedC.elegansmicrobiomeisdistinctfromthemicrobialcommunityofthecorrespondingsubstratesandofcongenericnematodessuchasC.remanei,possiblysuggestingthepresenceofaspecies-specificmicrobiome,anotionthatwasmorerecentlyproposedbyastudyexaminingdifferencesinthemicrobiotasofdifferentCaenorhabditisspecies(Bergetal.,2016b).Importantly,microbiomesofwormscollectedfromdifferentsamplingsitesandsubstratesresembledeachotherand,additionally,themicrobialcommunityfromsinglewormsimmediatelyafterisolationfromthewildoverlapswiththemicrobiomefromwormpopulationsexpandedinthelabfromoveraperiodofseveralweeks(withoutadditionoflabfood)(Dirksenetal.,2016).TheseobservationsstronglysuggestthatC.elegansharborsacharacteristicmicrobiomethatisdefinedbyitspropertiesasaspeciesandthustheunderlyinggenome,irrespectiveofanyenvironmentaland/orgeographicvariations.ItisyetunclearwhetherthischaracteristicmicrobiomeisactivelyselectedbyC.elegansortheresultofdifferencesinnematodecolonizationefficacyofthevariousbacteriaorboth. FIGURE1 Figure1.CompositemicrographsoftheC.elegansmicrobiome.(A)CompositemicrographofthemouthregionofC.elegans,and(B)ofthemiddlepartoftheworm(anterioristotheleftinbothcases).Nematodeswereraisedonanexperimentalmicrobiomebasedon14abundantbacterialtaxa,followedbymicroscopicanalysis(Dirksenetal.,2016).BacteriaarestainedinredwithaeubacterialFISHprobeandareobservedassmalldotsthroughouttheentiregut.WormnucleiarestainedinbluewithDAPI.Thepicturein(A)istakenfromDirksenetal.(2016),whilethatin(B)isnew,courtesyofPhilippDirksenfromtheSchulenburglab. Tomodelnaturalenvironmentsinthelab,workintheShapiralabestablishedanexperimentalpipeline,inwhichgenetically-homogenouswormpopulations,initiatedfromgerm-freelarvaeofthestandardN2strainareraisedindiverselab-basedenvironmentsthatemulatehabitatsfromwhichC.eleganshasbeenisolatedinthewild(Table1)(Bergetal.,2016a).Comparisonsofmicrobialcommunitiesfromnematodesandtheircorrespondingmicrocosmenvironments(bothanalyzedbyV416SrDNAdeepsequencing)identifiedacharacteristicC.elegansgutmicrobiome,distinctfromtheenvironment,andadditionallysuggestedthatassemblyofthenematodegutmicrobiomewasessentiallyadeterministicprocessundertheseconditions.Thereproducibilityofwormmicrobialcommunitiesenabledidentificationofasharedcoremicrobiome,whichaccountedfor>50%ofallbacterialtaxa.Theanalysisofnematodemicrobiomesfromthesemicrocosmexperimentsadditionallyrevealedthepresenceoftwodistincttypes,whichwereindependentoftechnicalvariables,anddifferedintheabundanceofcorefamilies,aswellasinclusionofauxiliarytaxa.Subsequentexperimentsevaluatingtheeffectsoftemperatureonmicrobiotacompositionfoundthatchangesinmicrobeabundanceinwormswerefrequentlyintheoppositedirectiontochangesintheenvironment,stronglysuggestinghostmediation.Amorerecentstudyconfirmedthat,ontopofenvironmental-dependentvariability,hostgeneticshadasignificantcontributiontoshapingcompositionofthemicrobiome:microbialcommunitiesweremoresimilarinwormsofthesamestrainthanbetweenwormsofdifferentstrainsandspecies(Bergetal.,2016b). SimilarityandDifferencesoftheC.elegansMicrobiomeacrosstheThreeStudyApproaches BringingtogetherthethreestudiesenablesustobetterdefinetheC.elegansgutmicrobiotabycomparingmicrobiomecompositionsbetweenwormsanddifferentsubstrates,ascharacterizedbydifferentlabswithdistinctstudyapproachesandindifferentpartsoftheworld(seemeta-dataforsamplesinSupplementaryTable1).Principlecoordinateanalysisusingphylogenetic-basedunweighteddistancesbetweenallmicrobiotas,fromwormsandfromtheirsubstrates,demonstratedthatinthediversityspacedefinedbythedistributionofsubstratemicrobiotas,wormmicrobiomestookupalimitedsub-space(SeefilledsymbolsinFigure2A).Analyzedwormmicrobiomesincluded(i)singlewormscharacterizedshortlyaftertheirisolation(naturalworms;studybyDirksenetal.,2016),(ii)groupsofwormsmaintainedforapproximately2weekswiththeirnativemicrobiomesunderlaboratoryconditionsbeforemicrobialanalysis(labenrichedworms;studybyDirksenetal.,2016),and(iii)wormsofthelaboratorystrainN2raisedincompostmicrocosms(microcosmworms;studybyBergetal.,2016a).ThestrongoverlapamongthesemicrobiomesandtheirdistinctcompositioncomparedtothecorrespondingsubstratesstronglysuggeststhatC.elegansassemblesfromtheenvironmentadefined,non-randommicrobialcommunity,whichisrobusttovariationsinstudyapproach(i.e.,microcosmsvs.naturalworms),labsinvolved,andtoperturbationsduetomaintenanceofwormsunderlaboratoryconditionsratherthantheirnaturalenvironments(i.e.,naturalvs.labenrichedwormsinthestudybyDirksenetal.,2016).SucharobustsignatureinmicrobiomecommunitycompositionhighlightsthesuitabilityoftheC.elegansmodelfordissectinghost-microbiomeinteractionsandtheunderlyinggeneticsirrespectiveofthestudyapproach. FIGURE2 Figure2.Cross-studycomparisonofC.elegansandsubstratemicrobiomes.(A)PrinciplecoordinateanalysesbasedonunweightedUniFracdistancesshowsdistinctclusteringofC.elegans(filled)fromrottingfruitorcompostsubstrates(open)regardlessofthestudyoforigin.Athree-dimensionalrepresentationoftheresultsisprovidedinSupplementaryVideo1.ThecharacteristicsoftheincludedsamplesispresentedinSupplementaryTable1,whiletheidentifiedOTUsandtheirabundancesaregiveninSupplementaryTable2.Allmicrocosmdatasets(giveningreen)arefromBergetal.(2016a).Allnaturalandlabenrichedwormdatasets(giveninfilledpurpleandmagentasymbols)arefromDirksenetal.(2016).ThesubstratedatasetsforrottingstemareexclusivelyfromSamueletal.(2016),whilethoseforvectorandrottingfruitsincludedatafrombothDirksenetal.(2016)andSamueletal.(2016),andthoseforcompostareexclusivelyfromDirksenetal.(2016).C.elegansmicrobiotasaregenerallylessdiversethansubstratesasassessedbyShannonalphadiversityindices(B),andexhibitmoresimilarcompositionwithineachwormgroupthantosubstratesorbetweensubstrates(C).Non-parametricp-values≤0.002arenoted:a,vs.substrates;b,vs.soilmicrocosm;c,vs.wormgroup. ThepresenceofadistinctsignatureoftheC.elegansmicrobiomeacrossstudiesisconfirmedbyrelatedstatisticalanalyses.Unweighteddistancestakeintoconsiderationonlypresenceoftaxa,disregardingtheirabundance,andthereforerepresenttheoverallrichnessofmicrobiotas,withthoseinwormsappearingtohostasubsetofthebacteriaavailableintheirenvironment.Inagreementwiththis,wormmicrobiotasgenerallyshowsubstantiallylowermicrobialdiversitycomparedtotheirrespectivesubstrates,withtheexceptionofrottingfruitsthatarealreadysimplethemselves(Figure2B).Theyalsoshowagreatersimilarityamongthemselves,asdemonstratedbysmallerinter-microbiotadistances(Figure2C).ThenaturalC.elegansmicrobiomesexhibitedthehighestvariationamongnematodegroups.Interestingly,theidentifiedmicrobialcommunitiesappearedtobedividedintotwodistinctgroups.Oneoftheseclusteredwithalmostallmicrobiomesfromlab-enrichedwormsandsomeofthemicrocosmnematodes,whereasthesecondgroupclusteredwithaseparatesetofmicrobiomesofthemicrocosmnematodes(Figure2A).Whetherthisdivisionrecapitulatesthetwomicrobiometypespreviouslyreportedforthemicrocosmexperiments(Bergetal.,2016a)isyetunclear.Nevertheless,thepresenceofdistincttypesamongnaturalC.eleganssamplessuggeststhatnematodesmayharbordifferent“enterotypes.”Inmicrocosmexperiments,distincttypesmaybeattributedtoenvironmentalmicrobeavailabilityandmicrobialcompetition,assuggestedbyecologicalnetworkanalysis(Bergetal.,2016a).Inwildisolates,variationinhostgenetics,shouldalsobeconsideredasapotentialdeterminantofthepresenceofsuchtwomicrobiometypes.Theimportanceofhostgeneticsinthiscontextissupportedbytwoadditionalfindings:TheanalysisoftheexperimentalmicrobiomebyDirksenetal.identifiedasignificantinfluenceofC.elegansstrainonbacterialcommunitycomposition(Dirksenetal.,2016).Amorerecentsetofmicrocosmexperiments,inwhichdifferentC.elegansstrainsandrelatedspecieswereraisedonthesamesubstrate,showedco-clusteringofnematodegutmicrobiotasaccordingtotheirgenotype(Bergetal.,2016b). ManybacterialtaxawerecommonlyidentifiedamongtheC.elegansmicrobiotas(Figures3A,B;SupplementaryTable2).Strikingly,260bacterialOTUs(operationaltaxonomicunits)wereidentifiedinallofthestudies(Figure3A,inset;SupplementaryTable2).Severalbacterialtaxawereparticularlyabundantinwormmicrobiotas(Figure3C),includingthreeGammaproteobacteria:Enterobacteriaceae,Pseudomonadaceae,andXanthomonadaceae.Commoninnaturalmicrobiotas,butlesssoinmicrocosmexperimentsweretheAlphaproteobacteriamembersSphingomonadaceae,andthreeBacteroidetesfamilies(Sphingobacteriaceae,Flavobacteriaceae,andWeeksellaceae)(Figure3C).Interestingly,Acetobacteriaceae,whichwerefoundtocorrelatewithlargepopulationsofproliferatingC.elegansinrottingapples(Samueletal.,2016),werepresentatlowlevelsinallofthenaturalwormsthatwereexamined(Figure3C).Itisnotlikelythatthislow,yetconsistentpresenceisduetocontamination,asseveralotherclassesofbacteriapresentathighlevelsinsubstrateswerereproduciblyexcludedfromcolonizationoftheworms,includingforexamplePlanctomycetesandmostAcidobacteria(Figure3B).Moreover,althoughAcetobacteriaceaearecommoninfruit,theirabundanceismuchlowerincompost,fromwhichmostofthecharacterizednaturalC.eleganswereisolated.InadditiontoAcetobacteriaceae,severalotherProteobacteria(Moraxellaceae,Comamonadaceae,andRhodobacteraceae)andActinobacteria(MicrobacteriaceaeandActinomycetales)alsofitintothisrare,butcommoncategorywithinthenaturalC.eleganssamples.Thecombinationoflowabundanceinnematodes,yetapparentimportancefortheirfitness,suggeststhatmembersoftheAcetobacteriaceaeandpossiblyalsotheotherabovelistedfamiliesmayserveaskeystonetaxaoftheC.elegans-microbiomeassociationwithcurrentlyunknownfunction.Furtheranalysesareneededtoelucidatethesepotentialroles. FIGURE3 Figure3.IdentificationofacoremicrobiomeofC.elegans.(A)ScatterplotofOTU-levelmeanrelativeabundanceandcommonalityacrossall62C.elegansmicrobiomes.Inset,VenndiagramofthesharedOTUsfromeachofthegroupsofmicrobiotas.(B)ComparisonofmeanrelativeabundanceinallC.elegansand119substratesamples.Thecolorsofcirclesin(A,B)indicatetheOTUsfromdistinctbacterialphyla,whilecirclesizetheirabundance,ashighlightedinthelegendonthefarright.(C)Heatmapof14bacterialfamiliesthatarepresentin100%ofthenaturalwormmicrobiomesshowingabundanceacrosssamples(in%).Redboxeshighlightthosethatareabundantalsoinlab-enrichedandmicrocosmmicrobiotas.Thecolorsoftheverticalcolumnontheleftoftheheatmaparethesameasin(A,B)andindicatethedifferentbacterialphyla.Amoredetailedheatmap,whichadditionallyincludesallsubstratesamples,isprovidedasaSupplementaryFigure1.AlistoftheidentifiedOTUsandtheirabundancesinC.elegansandsubstratesisprovidedasaSupplementaryTable2. TheC.eleganscoremicrobiotaemergingfromthemeta-analysisisnotverydifferentfromthosedefinedbyeachoftheseparatestudies.Furthermore,membersofthetwomoreprominentfamilies,EnterobacteriaceaeandPseudomonadaceae,wereisolatedfromC.elegansinearlierstudies(Grewal,1991;Ladyginaetal.,2009).Together,thisindicatesthatasignificantpartoftheC.elegansmicrobiomeisofareproduciblydefinedcompositionthatisdominatedbyGram-negativebacteria,inparticularfast-growingbacteriawithflexiblemetabolisms.Thesebacteriaaretypicallystrongcompetitors,bothintheenvironment,wheretheyareeffectivecolonizersofrottingfruit,andalsoinsidetheworm(Bergetal.,2016a). PossibleFunctionsoftheWorm'sMicrobiome ConsideringtheconsistentassociationbetweenC.elegansandtheidentifiedbacterialtaxa,itisofinteresttoknowifandwhatadvantagestheymayprovidefortheirhost.Samueletal.demonstratedthatnearly80%ofthemorethan550bacteriaisolatedfromFrenchsubstrates(BIGbandJUbcollections)canindividuallysupportC.elegansgrowth(Samueletal.,2016).Thetestedcollectionscomprised437bacteriafromrottingOrsayapples(orotherhabitatsfromsitesaroundParis)harboringlargepopulationsofC.elegansand128isolatesfromavarietyofsampletypesandlocationswhereC.elegans(and/orC.briggsae)animalswereidentified.Usingacombinationofphysiologicalmeasures,growthratesandinductionofstressandimmunereportergenes,thesecollectionsofbacteriawerecategorizedasbeinggenerally“beneficial”(promotestress-freegrowth),“detrimental”(impairgrowth,kill,activatestress/immunereporters)or“intermediate”(mixedresponses).SeveralProteobacteria,includingEnterobacteriaceae,Gluconobacter,Enterobacter,ProvidenciaandalsomostLactococcusstrainsweremore“beneficial”toC.elegans.MoredetrimentalgeneraincludedBacteroidetes,suchasChryseobacteriumandSphingobacterium,andpotentiallypathogenicGammaproteobacteria(e.g.,XanthomonasandStenotrophomonas).Interestingly,isolateswithingeneravariedininfluenceonC.elegansphysiology(e.g.,measuredwiththehelpofstressreportergenesorgrowthcharacteristics),withtheexceptionofGluconobacter,suggestingtheimportanceofstrain-leveldifferencesingenecontent(Samueletal.,2016). Dirksenetal.alsoestablishedanexperimentalmicrobiome(Figure1),consistingof14bacterialstrainsthatwereisolatedfromwildC.elegansandrepresentedabundantgeneraoftheworm'snativemicrobiome(Dirksenetal.,2016).ThreedifferentC.elegansstrains,thelaboratorystrainN2andtwonaturalisolates(allthreeisogenicandwithdifferentgenotypes,asmeasuredwiththehelpofmicrosatellites;HSunpublisheddata),weregrownontheexperimentalmicrobiomeandbacterialpopulationsinwormswereanalyzedattwodifferentdevelopmentalstages,thefourthlarvalstage(L4)andadults.AnalysisofthebacterialpopulationsofthesewormsrevealedthatthedevelopmentalstageaswellasthehostgenotypecaninfluencethecompositionoftheC.elegansmicrobiome.Intriguingly,certainbacteriaappeartobespecificallyenrichedinworms(whencomparedtotheexperimentalmicrobiotaonagarplates),especiallyOchrobactrumMYb71andStenotrophomonasMYb57.ThisobservationpossiblyindicatesthatthesetaxaareabletocolonizetheC.elegansintestine.AtleastforOchrobactrumMYb71,theabilitytopersistinthenematodeintestinewasdemonstratedinaseparateexperiment(Dirksenetal.,2016).Inaddition,theexperimentalmicrobiomewasfoundtoenhancewormfitnessincomparisontopresenceofonlythestandardlaboratoryfoodE.coliOP50andmeasuredusingpopulationgrowthasproxy.Fitnesswasinthiscaseincreasedunderdifferentstressconditions,includinghigheraswellaslowertemperatures,differentmediaandsalinities.AnalysisofindividualbacterialisolatesfurtherhighlightedthatthepositiveeffectonfitnessislikelycausedbyProteobacteria;especiallyrepresentativesofthegeneraPseudomonas,Achromobacter,Acinetobacter,andComamonasassociatedwithsubstantiallylargerpopulationgrowththanthatobservedundercontrolconditions(Dirksenetal.,2016). Thebest-characterizedcontributionsofgutmicrobesweretohostimmunity.TheShapiralabpreviouslyidentifiedaPseudomonasmendocinagutisolatethatconferredresistancetoinfection.RaisingwormsontheisolateprotectedwormsfromsubsequentexposuretopathogenicP.aeruginosa,slowing-downcolonizationandkilling(Montalvo-Katzetal.,2013).Thisprotectionwasfoundtobeprovidedbylow-levelactivation(orpriming)ofp38signaling,acentralmoduleinC.elegansimmunity(Kimetal.,2002;Troemeletal.,2006;Shiversetal.,2010;Blocketal.,2015).WhiletheabilityofthePseudomonascommensaltoprovideprotectionfromthePseudomonaspathogen,maybeassociatedwiththesimilaritybetweenthem,otherPseudomonasisolateswereunabletoprovideprotection,indicatingagreaterspecificityinrecognitionandimmuneactivation.Inthestandardinfectionprotocol,apriorexposuretotheP.mendocinacommensalwasonlyabletodelaycolonizationanddeath.However,inamorenaturalscenario,inwhichP.aeruginosawasspikedintosoilwithgrowingworms,infectioncouldbecompletelyaverted(MBandMSunpublisheddata),stressingtheimportanceofsuchcommensalsforwormfitnessinitsnaturalhabitat.Morerecently,newisolatesofEnterobactercloacae,obtainedeitherfromC.elegans(1isolate)orC.briggsae(2isolates),werefoundtoprotectthewormfromapathogenicstrainofEnterococcusfaecalis.Interestingly,protectionwasspecifictothehostfromwhichthebacteriawereisolated:TheE.cloacaeisolatefromC.elegansonlyprotecteditsoriginalhost,butdidnotprotectC.briggsae,andviceversaforthetwoC.briggsaeisolates(Bergetal.,2016b).ThesefindingssuggestspecificselectionofprotectivesymbiontsbythehostandpossiblyevensomeformofCaenorhabditis-Enterobacterco-adaptation.Suchapossibilityagreeswitharecentdemonstration,usingcontrolledevolutionexperiments,ofco-adaptationsbetweenC.elegansandadifferentprotectivebacterialstrain,whichreducedinfectionbypathogenicStaphylococcusaureus(Fordetal.,2016;Kingetal.,2016). TwoPseudomonasisolates,obtainedfromwildC.elegansanddistinctfromP.mendocina,wererecentlyshownbyDirksenetal.toinhibitthegrowthofsixfungalstrains,allsimilarlyisolatedfromnaturalC.elegans(Dirksenetal.,2016).Moreover,oneoftheseisolatesprotectedC.elegansfromdeathbyawell-establishedfungalinfectionmodel,theascomyceteDrechmeriaconiospora(Lebrigandetal.,2016;Zugastietal.,2016).FungalinducedmortalitywascompletelypreventedwhennematodeswereexposedtothepathogenicfungusinthepresenceofthePseudomonasisolateMYb11.ItwasstillsignificantlyreducedwhenwormswerefirstgrownonMYb11duringdevelopmentandthenexposedtothefungusasadultsonnewplates,whichonlycontainedthelaboratoryfoodE.coli,butnotMYb11,possiblyindicatingalong-lastingprotectiveeffectfromthelatterbacterium(Dirksenetal.,2016).Thesestudies,addedtothosefromtheShapiralab,assigndiverseanti-pathogeniccontributionsofPseudomonadstoC.elegans,whichmaysuggestasharedhistoryofinteractions,andperhapsofevolution. Samueletal.expandedthespectrumofbacterialcontributionstoC.eleganspathogenresistance(Samueletal.,2016).WhenC.elegansgrowthwasassessedinthecontextofbinarydilutionseriesofthreebeneficial(Gluconobactersp.GRb0611,Enterobacteriasp.JUb54,Providenciasp.JUb39)andthreedetrimentalbacteria(Serratiasp.JUb9,Pseudomonassp.GRb0427andChryseobacteriumsp.JUb44),thenthebeneficialbacteriasignificantlyreducedthenegativeeffectofthedetrimentaltaxaonwormgrowth.Notably,similaramountsofeachequallybeneficialnaturalbacteria(orE.coliOP50)didnothavethesamemitigatingeffectoneachofthepathogens,suggestingthateachwashavingitsownspecificprotectiveimpactratherthanexhibitingasimpledilutionoftheconcentrationofagivenpathogen.Whetherthesemechanismsoccurdirectlyonthepartofthehost(e.g.,immune-boosting),indirectlybyinhibitinggrowthofthepathogens,orviaarelatedmethodremainstobeseen. FutureChallenges C.eleganspossessesamicrobiomewithadefinedsignature,whichcanencompassalargenumberofbacterialtaxaperindividualworm.TheexactpresenceandrelativeabundanceofbacterialtaxacanvarysubstantiallyamongsingleC.elegansisolatesfromthewild(Dirksenetal.,2016)(Figure2A).Aparticularchallengeistodeterminethestabilityofthismicrobialcommunityandthestrengthofassociationofmicrobiotamemberswiththeirhost.Arebacterialstrainsabletopersistoverlongtimeperiodsinnematodehosts,evenifthesemigratebetweensubstrates?Aresuchstrainsabletopersistindauerstages,likelyusedbythehostforlong-distancemigration,andaretheytransmittedverticallybetweenhostgenerations?TowhatextentdoCaenorhabditisspeciesdifferintheirassociatedmicrobiomes,especiallywhenconsideringhoststrainsfromdifferentorigins?Futureeffortswillneedtocatalogthespecificfunctionsofdifferentmembersofthemicrobialcommunity,includingdominanttaxa,butalsothelessabundantkeystonetaxa(i.e.,thosetaxaconsistentlyfoundatlowfrequencyacrosswormsamples).DoindividualbacterialstrainsengageinmutualisticinteractionswithC.elegans—e.g.,byenhancingreproductiveratesoftheirhostsbyamelioratingaccesstonutritionfromanewlycolonizedsubstratewhilethehostenhancesmicrobes'dispersalopportunities?Thesequestionscouldbetestedusingexperimentalevolutionapproaches(e.g.,Masrietal.,2015),includingmulti-generationalpropagationofC.elegans-microbepopulationsondefinedsubstrates,andexaminedbymicroscopicanalysisofbacterialcolonizationandpersistenceaswellasbymeasuringhostandbacterialfitness. ThenatureofinteractionsbetweenhostsandtheirmicrobiotaisanimportantstandingquestionthatcouldbeaddressedintheC.elegansmodel.Ontheonehand,tightassociationbetweenC.elegansandspecificbacterialtaxamaysuggestco-evolution.Inthiscase,weexpectreciprocalgeneticchangesinC.elegansandindividualmicrobiallineages,resultinginco-adaptationsthataremanifestedinthemolecularinteractionsamonghostandthespecificmicrobes(e.g.,theexpressionofspecificmicrobialsignalingmoleculesandcorrespondinghostreceptors).Ontheotherhand,itispossiblethattheworm'smicrobiotaisflexiblyassembledfromtheenvironment,andconsistsofvaryingbacterialstrainsandtaxa,whichhoweverreproduciblyfulfillparticularfunctions.However,wecurrentlylackmoleculardataandalsomoredetailedinformationonthefunctionaleffectsofthebacteriatoassessthetwoalternatives.Someoftheavailabledatastillprovidessupportforeachofthehypotheses.Thatthewormmicrobiotaislargelyreproducibleevenwhenstartingfromdiverseenvironmentsisconsistentwiththefirstpossibility(Bergetal.,2016a;Dirksenetal.,2016;andmeta-analysispresentedhere).Asignificantcontributionofhostgeneticstoshapingofthegutmicrobiotafurtherofferssupport(Bergetal.,2016b;Dirksenetal.,2016).However,astrongcontributionofenvironmentaldiversitytogutmicrobiotacompositionratheragreeswiththesecondpossibility(Bergetal.,2016b).Thatbothalternativesareimportantisconsistentwiththerecentmodel,proposedbyoneofus(Shapira,2016),whichsuggeststhegutmicrobiometobedividedintotwoparts.First,acoremadeofcommensalswithtightassociationswiththehost,potentiallysharingco-evolutionaryhistoryandpossiblymaintainedbyverticaltransmission.Second,aflexiblemicrobialpoolthatdependsonenvironmentalavailabilityandcanprovidefunctionalversatility,possiblyadvantageousinachangingenvironment.Thetwopresentedalternativesmayactuallyrepresentoppositeendsofarangeofinteractions.Asanexampleforassociationsofatypethatmayliefurthertowardthecenterofthisrange,onecanconsidertheacquisitionofbeneficialsymbiontsfromagreaterenvironmentaldiversity,relyingonmechanismspermittingpartnerchoiceorcheckingforpartnerfidelity.Thishasbeenshowntooccurinthecolonizationofthebobtailsquid'slightorganbyVibriosymbiontsfromthemarineenvironment(Kremeretal.,2013;Aschtgenetal.,2016),aswellasintheacquisitionofXenorhabdusgut-residingbacteriabytheSteinernemaentomoparasiticnematode(Murfinetal.,2015).FiguringouthowC.elegansobtainsthedifferentmembersofitscharacteristicgutmicrobiotaremainstobeelucidated. AparticularstrengthoftheC.elegansmodelisitsamenabilitytogeneticmanipulation.Thisstrengthcouldbecomplementedbygeneticanalysisofindividualbacterialtaxa.Forexample,ifacertainbacterialstrainormixtureisfoundtohaveastronginfluenceonaparticularphenotype,thegeneticsoftheinteractioncouldbedissectedbyforwardandreversegeneticanalyses,ideallyinbothpartners.Suchtwo-sidedgeneticanalyseswillopenthepossibilitytocharacterizeindetailhostaswellasmicrobialmolecularprocessesthatcontrolhost-microbiomeinteractions. MethodsUsedforMeta-Analysis Thethreestudiesappliedthesame16SrRNAgeneprimerstargetingvariableregion4(515F/806R)inbacteria(Caporasoetal.,2012).However,goodqualityreadsweresometimesobtainedwiththeforwardprimer,andsometimeswiththereverseprimer.Inordertofacilitatecross-comparisons,forwardreadswereusedforallexperiments[includingre-sequenced(IlluminaMiSeq)samplesfromSamueletal.,2016],sacrificinginsomecasesthenumberofreadspermicrobiota.Additional(previouslyunpublished)sequenceswereincluded,withDNAisolatedfromC.eleganssubstrates,suchasrottingapplesfromOrsay(FR),rottingPetasitesstemsfromIvry(FR)andslug/snailvectorsfromSanteuil(FR).FastqfilesfromthethreestudieswereseparatelyqualitytrimmedandfurtherprocessedusingtheQIIMEsoftwarepackage(v1.9.0)(Caporasoetal.,2010).Sequencereadswithanaveragequalityscorebelow25andmorethan1ambiguousbasewerediscarded.Sequenceswhichpassedqualityfiltersweretruncatedto150bplengthtofacilitatecomparisonswiththeIlluminaHiSeqreadsofBergetal.(2016a),givingrisetoadatasetcontaining15,197,186readstotal,withameanof74,862andmedianof51,932readspersample.Resultingfastafileswereconcatenatedintoonefile,andthe16SrRNAgenesequenceswerefurtheranalyzedusingQIIME.DenovoOTUextractionwasperformedwiththeuclustoptioninQIIME.SingletonswereremovedfromcentroidconsiderationusingtheUSEARCH(Edgar,2010)suite.ResultingreadswereclusteredusingtheUPARSEalgorithmat3.0%(4mismatches)clusteringradius.CentroidsweremappedtotheGreengenes13.8databasefortaxonomicassignmentat97%(3.0%clusteringradius)identity.CentroidsfailingtomaptothedatabasewereevaluatedwithUTAXforadenovotaxonomicassignment.Sequencesthatmatchplantchloroplast,mitochondrial,orarchaeal16SrRNAwereremoved.Sequencesusedforourmeta-analysisareavailablefrompublicdatabases,includingtheEuropeanNucleotideArchivefortheSchulenburglabdata(www.ebi.ac.uk/ena;accessionnumberERP014530);theSequenceReadArchivedatabasefortheSamuellabdata(www.ncbi.nlm.nih.gov/sra;accessionnumberSRS1849345),andtheMG-RASTmetagenomicarchivefortheShapiralabdata(http://metagenomics.anl.gov;accessionnumbersmgp13213andmgp21372).Thesamplenames,accessionnumbers,andadditionalmeta-dataarepresentedinSupplementaryTable1.IdentifiedOTUs,theirabundances,taxonomicclassifications,andthe16SrDNAfragmentconsensussequencesofthemostabundantC.elegans-associatedOTUsaregiveninSupplementaryTable2. DiversityindiceswerecomputedinQIIMEusingcore_diversity_analyses.pywithdefaultparameters.Forestimatesofalpha-diversity(withinsample),sampleswererarefiedto5,000sequences,andthosesampleswithfewerreadswereremoved.AlphadiversitywasdeterminedusingShannonIndex.Beta-diversity(betweensample)distancematricesweregeneratedusingOTUtablesrarefiedto500observationstoincludeasmanysamplespossible.AphylogenetictreeofsequencesrepresentingthecentroidforeachOTU(arepsettree)wasgeneratedusingClustalOmegawithanenhancedversionofmBedanddefaultparameters(SieversandHiggins,2002).Usingthisrepsettree,phylogenetic-basedunweightedUniFrac(LozuponeandKnight,2005)methodswereusedtofacilitatecomparisonsofpresence/absencepatterns(richness)betweensampleandsubstratetypes.PhylogeneticrelatednessoftheOTUsandsimilarityofcompositionbetweensamplesareintegratedtocreateUniFracdistancematricesthatallowthiscomparisonthatwerevisualizedbyprinciple-coordinateanalysesinQIIME.Heatmapsweregeneratedonnon-rarefied,relativeabundanceOTUtablesandplottedinRusingggplot.VenndiagramswerecreatedbasedonsharedOTUsbetweencomposite(pooled)samplesforeachsubstrateorsampletype.Insomecases(i.e.,Shannondiversity,betadiversityboxplotsandheatmap),reverseread-basedassessmentsofmicrocosmsamplesfrom(Bergetal.,2016a)wereincludedtobetterreflecttheconclusionsoftheoriginalstudies. AuthorContributions MS,BS,MF,andHSconceivedthework.FZandBSgeneratednewmicrobiomedata.FZ,MB,MS,BSperformedthemetaanalysis.Allauthorsresearchedtheliteratureandwrotethemanuscript. ConflictofInterestStatement Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgments WethankthemembersoftheFélix,Samuel,Shapira,andSchulenburglabsfordiscussion.WearegratefulforfundingtoKDandHSfromtheGermanScienceFoundationwithintheCollaborativeResearchCenterCRC1182ontheoriginandfunctionofmetaorganisms(projectsA1.1,A1.2,andA4.3).MBissupportedbytheNationalScienceFoundationGraduateResearchFellowshipProgram(DGE1106400). SupplementaryMaterial TheSupplementaryMaterialforthisarticlecanbefoundonlineat:https://www.frontiersin.org/article/10.3389/fmicb.2017.00485/full#supplementary-material SupplementaryTable1.Overviewofincludeddatasets,sequenceaccessionnumbers,andconsideredmeta-data. SupplementaryTable2.Overviewofidentifiedoperationaltaxonomicunits(OTUs).SheetIshowstheidentifiedOTUsandtheirabundancesintheC.eleganssamples,whilesheetIIthoseforsubstratesamples.SheetIIIpresentsalistofallOTUswiththeirtaxonomicclassification.SheetIVgivesthe260OTUscommonlyfoundamongthenematodesamples,includingthecorresponding16SrDNAfragmentsequences. SupplementaryVideo1.Three-dimensionalvisualizationoftheresultsofthePrincipleCoordinateAnalysis.Figure2Aofthemaintextshowspartofthesameresults.Botharebasedonthesameanalysis.ThecolorcodeissimilartothatofFigure2A:red,rottingstemsubstrates;darkred,compostsubstrates;orange,vectorsubstrates;lightblue,rottingfruitsubstrates;verylightgreen,microcosmsubstrates;purple,naturalwormssamples;pinkt,labenrichedworms;andbrightgreen,microcosmwormsamples.Allthreeprinciplecoordinatesareshownalongthethreeaxes. SupplementaryFigure1.Heatmapoftherelativeabundanceof14bacterialfamiliesthatarepresentin100%ofthenaturalwormmicrobiomes.Seelegendontherightforabundancelevels.Taxaandboxesinredhighlightthosethatareabundantalsoinlab-enrichedandmicrocosmmicrobiotas.TheheatmapforthewormsamplesisalsoshowninFigure3Cofthemaintext,buthereextendedbythesubstratesamples. References Aschtgen,M.-S.,Wetzel,K.,Goldman,W.,McFall-Ngai,M.,andRuby,E.(2016).Vibriofischeri-derivedoutermembranevesiclestriggerhostdevelopment:OMVdeliversignalsinthesquid/vibriosymbiosis.Cell.Microbiol.18,488–499.doi:10.1111/cmi.12525 PubMedAbstract|CrossRefFullText|GoogleScholar Avery,L.,andShtonda,B.B.(2003).FoodtransportintheC.eleganspharynx.J.Exp.Biol.206,2441–2457.doi:10.1242/jeb.00433 PubMedAbstract|CrossRefFullText|GoogleScholar Berg,M.,Stenuit,B.,Ho,J.,Wang,A.,Parke,C.,Knight,M.,etal.(2016a).AssemblyoftheCaenorhabditiselegansgutmicrobiotafromdiversesoilmicrobialenvironments.ISMEJ.10,1998–2009.doi:10.1038/ismej.2015.253 PubMedAbstract|CrossRefFullText|GoogleScholar Berg,M.,Zhou,X.Y.,andShapira,M.(2016b).Host-Specificfunctionalsignificanceofcaenorhabditisgutcommensals.Front.Microbiol.7:1622.doi:10.3389/fmicb.2016.01622 PubMedAbstract|CrossRefFullText|GoogleScholar Block,D.H.,Twumasi-Boateng,K.,Kang,H.S.,Carlisle,J.A.,Hanganu,A.,Lai,T.Y.,etal.(2015).ThedevelopmentalintestinalregulatorELT-2controlsp38-dependentimmuneresponsesinadult,C.elegans.PLoSGenet.11:e1005265.doi:10.1371/journal.pgen.1005265 PubMedAbstract|CrossRefFullText|GoogleScholar Bosch,T.C.G.,andMiller,D.J.(2016).TheHolobiontImperative.Vienna:Springer. GoogleScholar Caporaso,J.G.,Kuczynski,J.,Stombaugh,J.,Bittinger,K.,Bushman,F.D.,Costello,E.K.,etal.(2010).QIIMEallowsanalysisofhigh-throughputcommunitysequencingdata.Nat.Methods7,335–336.doi:10.1038/nmeth.f.303 PubMedAbstract|CrossRefFullText|GoogleScholar Caporaso,J.G.,Lauber,C.L.,Walters,W.A.,Berg-Lyons,D.,Huntley,J.,Fierer,N.,etal.(2012).Ultra-high-throughputmicrobialcommunityanalysisontheIlluminaHiSeqandMiSeqplatforms.ISMEJ.6,1621–1624.doi:10.1038/ismej.2012.8 PubMedAbstract|CrossRefFullText|GoogleScholar Clark,L.C.,andHodgkin,J.(2014).Commensals,probioticsandpathogensintheC.aenorhabditiselegansmodel:commensalsintheC.elegansmodel.Cell.Microbiol.16,27–38.doi:10.1111/cmi.12234 PubMedAbstract|CrossRefFullText|GoogleScholar Cohen,L.B.,andTroemel,E.R.(2015).MicrobialpathogenesisandhostdefenseinthenematodeC.elegans.Curr.Opin.Microbiol.23,94–101.doi:10.1016/j.mib.2014.11.009 PubMedAbstract|CrossRefFullText|GoogleScholar Coolon,J.D.,Jones,K.L.,Todd,T.C.,Carr,B.C.,andHerman,M.A.(2009).Caenorhabditiselegansgenomicresponsetosoilbacteriapredictsenvironment-specificgeneticeffectsonlifehistorytraits.PLoSGenet.5:e1000503.doi:10.1371/journal.pgen.1000503 PubMedAbstract|CrossRefFullText|GoogleScholar Dierking,K.,Yang,W.,andSchulenburg,H.(2016).AntimicrobialeffectorsinthenematodeCaenorhabditiselegans:anoutgrouptotheArthropoda.Philos.Trans.R.Soc.BBiol.Sci.371:20150299.doi:10.1098/rstb.2015.0299 PubMedAbstract|CrossRefFullText|GoogleScholar Dirksen,P.,Marsh,S.A.,Braker,I.,Heitland,N.,Wagner,S.,Nakad,R.,etal.(2016).ThenativemicrobiomeofthenematodeCaenorhabditiselegans:gatewaytoanewhost-microbiomemodel.BMCBiol.14:38.doi:10.1186/s12915-016-0258-1 PubMedAbstract|CrossRefFullText|GoogleScholar Edgar,R.C.(2010).SearchandclusteringordersofmagnitudefasterthanBLAST.Bioinforma.Oxf.Engl.26,2460–2461.doi:10.1093/bioinformatics/btq461 PubMedAbstract|CrossRefFullText|GoogleScholar Ewbank,J.J.,andPujol,N.(2016).Localandlong-rangeactivationofinnateimmunitybyinfectionanddamageinC.elegans.Curr.Opin.Immunol.38,1–7.doi:10.1016/j.coi.2015.09.005 PubMedAbstract|CrossRefFullText|GoogleScholar Ford,S.A.,Kao,D.,Williams,D.,andKing,K.C.(2016).Microbe-mediatedhostdefencedrivestheevolutionofreducedpathogenvirulence.Nat.Commun.7:13430.doi:10.1038/ncomms13430 PubMedAbstract|CrossRefFullText|GoogleScholar Frézal,L.,andFélix,M.-A.(2015).C.elegansoutsidethePetridish.Elife4:e05849.doi:10.7554/eLife.05849 PubMedAbstract|CrossRefFullText|GoogleScholar Grewal,P.S.(1991).InfluenceofbacteriaandtemperatureonthereproductionofCaenorhabditiselegans(Nematoda:Rhabditidae)infestingmushrooms(AgaricusBisporUs).Nematologica37,72–82.doi:10.1163/187529291X00079 CrossRefFullText|GoogleScholar Grewal,P.S.,andWright,D.J.(1992).MigrationofCaenorhabditiselegans(Nematoda:Rhabditidae)larvaetowardsbacteriaandthenatureofthebacterialstimulus.Fund.Appl.Nematol.15,159–166. GoogleScholar Kim,D.H.,andEwbank,J.J.(2016).SignalingintheInnateImmuneResponse.WormBook.doi:10.1895/wormbook.1.83.2 PubMedAbstract|CrossRefFullText Kim,D.H.,Feinbaum,R.,Alloing,G.,Emerson,F.E.,Garsin,D.A.,Inoue,H.,etal.(2002).Aconservedp38MAPkinasepathwayinCaenorhabditiselegansinnateimmunity.Science297,623–626.doi:10.1126/science.1073759 PubMedAbstract|CrossRefFullText|GoogleScholar King,K.C.,Brockhurst,M.A.,Vasieva,O.,Paterson,S.,Betts,A.,Ford,S.A.,etal.(2016).Rapidevolutionofmicrobe-mediatedprotectionagainstpathogensinawormhost.ISMEJ.10,1915–1924.doi:10.1038/ismej.2015.259 PubMedAbstract|CrossRefFullText|GoogleScholar Kremer,N.,Philipp,E.E.R.,Carpentier,M.-C.,Brennan,C.A.,Kraemer,L.,Altura,M.A.,etal.(2013).Initialsymbiontcontactorchestrateshost-organ-widetranscriptionalchangesthatprimetissuecolonization.CellHostMicrobe14,183–194.doi:10.1016/j.chom.2013.07.006 PubMedAbstract|CrossRefFullText|GoogleScholar Ladygina,N.,Johansson,T.,Canbäck,B.,Tunlid,A.,andHedlund,K.(2009).Diversityofbacteriaassociatedwithgrasslandsoilnematodesofdifferentfeedinggroups:bacteriaassociatedwithgrasslandsoilnematodes.FEMSMicrobiol.Ecol.69,53–61.doi:10.1111/j.1574-6941.2009.00687.x PubMedAbstract|CrossRefFullText|GoogleScholar Lebrigand,K.,He,L.D.,Thakur,N.,Arguel,M.-J.,Polanowska,J.,Henrissat,B.,etal.(2016).Comparativegenomicanalysisofdrechmeriaconiosporarevealscoreandspecificgeneticrequirementsforfungalendoparasitismofnematodes.PLoSGenet.12:e1006017.doi:10.1371/journal.pgen.1006017 PubMedAbstract|CrossRefFullText|GoogleScholar Lozupone,C.,andKnight,R.(2005).UniFrac:anewphylogeneticmethodforcomparingmicrobialcommunities.Appl.Environ.Microbiol.71,8228–8235.doi:10.1128/AEM.71.12.8228-8235.2005 PubMedAbstract|CrossRefFullText|GoogleScholar MacNeil,L.T.,Watson,E.,Arda,H.E.,Zhu,L.J.,andWalhout,A.J.(2013).Diet-induceddevelopmentalaccelerationindependentofTORandinsulininC.elegans.Cell153,240–252.doi:10.1016/j.cell.2013.02.049 PubMedAbstract|CrossRefFullText|GoogleScholar Masri,L.,Branca,A.,Sheppard,A.E.,Papkou,A.,Laehnemann,D.,Guenther,P.S.,etal.(2015).Host–pathogencoevolution:theselectiveadvantageofBacillusthuringiensisvirulenceanditscrytoxingenes.PLoSBiol.13:e1002169.doi:10.1371/journal.pbio.1002169 PubMedAbstract|CrossRefFullText|GoogleScholar McFall-Ngai,M.,Hadfield,M.G.,Bosch,T.C.G.,Carey,H.V.,Domazet-Lošo,T.,Douglas,A.E.,etal.(2013).Animalsinabacterialworld,anewimperativeforthelifesciences.Proc.Natl.Acad.Sci.U.S.A.110,3229–3236.doi:10.1073/pnas.1218525110 PubMedAbstract|CrossRefFullText|GoogleScholar Meisel,J.D.,andKim,D.H.(2014).BehavioralavoidanceofpathogenicbacteriabyCaenorhabditiselegans.TrendsImmunol.35,465–470.doi:10.1016/j.it.2014.08.008 PubMedAbstract|CrossRefFullText|GoogleScholar Montalvo-Katz,S.,Huang,H.,Appel,M.D.,Berg,M.,andShapira,M.(2013).Associationwithsoilbacteriaenhancesp38-dependentinfectionresistanceinCaenorhabditiselegans.Infect.Immun.81,514–520.doi:10.1128/IAI.00653-12 PubMedAbstract|CrossRefFullText|GoogleScholar Murfin,K.E.,Lee,M.-M.,Klassen,J.L.,McDonald,B.R.,Larget,B.,Forst,S.,etal.(2015).XenorhabdusbovieniistraindiversityimpactscoevolutionandsymbioticmaintenancewithSteinernemaspp.nematodehosts.MBio6,e00076–e00015.doi:10.1128/mBio.00076-15 PubMedAbstract|CrossRefFullText|GoogleScholar Petersen,C.,Dirksen,P.,andSchulenburg,H.(2015).WhyweneedmoreecologyforgeneticmodelssuchasC.elegans.TrendsGenet.31,120–127.doi:10.1016/j.tig.2014.12.001 PubMedAbstract|CrossRefFullText|GoogleScholar Samuel,B.S.,Rowedder,H.,Braendle,C.,Félix,M.-A.,andRuvkun,G.(2016).Caenorhabditiselegansresponsestobacteriafromitsnaturalhabitats.Proc.Natl.Acad.Sci.U.S.A.113,E3941–E3949.doi:10.1073/pnas.1607183113 PubMedAbstract|CrossRefFullText|GoogleScholar Shapira,M.(2016).Gutmicrobiotasandhostevolution:scalingupsymbiosis.TrendsEcol.Evol.31,539–549.doi:10.1016/j.tree.2016.03.006 PubMedAbstract|CrossRefFullText|GoogleScholar Shivers,R.P.,Pagano,D.J.,Kooistra,T.,Richardson,C.E.,Reddy,K.C.,Whitney,J.K.,etal.(2010).PhosphorylationoftheconservedtranscriptionfactorATF-7byPMK-1p38MAPKregulatesinnateimmunityinCaenorhabditiselegans.PLoSGenet.6:e1000892.doi:10.1371/journal.pgen.1000892 PubMedAbstract|CrossRefFullText|GoogleScholar Sievers,F.,andHiggins,D.G.(2002).“ClustalOmega,”inCurrentProtocolsinBioinformatics(JohnWiley&Sons,Inc.).Availableonlineat:http://onlinelibrary.wiley.com/doi/10.1002/0471250953.bi0313s48/abstract(AccessedJanuary12,2017). GoogleScholar Sterken,M.G.,Snoek,L.B.,Kammenga,J.E.,andAndersen,E.C.(2015).ThelaboratorydomesticationofCaenorhabditiselegans.TrendsGenet.31,224–231.doi:10.1016/j.tig.2015.02.009 PubMedAbstract|CrossRefFullText|GoogleScholar Stiernagle,T.(2006).MaintenanceofC.elegans.WormBook.doi:10.1895/wormbook.1.101.1 PubMedAbstract|CrossRefFullText Troemel,E.R.,Chu,S.W.,Reinke,V.,Lee,S.S.,Ausubel,F.M.,andKim,D.H.(2006).p38MAPKregulatesexpressionofimmuneresponsegenesandcontributestolongevityinC.elegans.PLoSGenet.2:e183.doi:10.1371/journal.pgen.0020183 PubMedAbstract|CrossRefFullText|GoogleScholar Venette,R.C.,andFerris,H.(1998).Influenceofbacterialtypeanddensityonpopulationgrowthofbacterial-feedingnematodes.SoilBiol.Biochem.30,949–960.doi:10.1016/S0038-0717(97)00176-4 CrossRefFullText|GoogleScholar Zugasti,O.,Thakur,N.,Belougne,J.,Squiban,B.,Kurz,C.L.,Soulé,J.,etal.(2016).Aquantitativegenome-wideRNAiscreeninC.elegansforantifungalinnateimmunitygenes.BMCBiol.14:35.doi:10.1186/s12915-016-0256-3 PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:Caenorhabditiselegans,microbiome,microbiota,meta-analysis,Enterobacter,Gluconobacter,Pseudomonas,Ochrobactrum Citation:ZhangF,BergM,DierkingK,FélixM-A,ShapiraM,SamuelBSandSchulenburgH(2017)CaenorhabditiselegansasaModelforMicrobiomeResearch.Front.Microbiol.8:485.doi:10.3389/fmicb.2017.00485 Received:08November2016;Accepted:08March2017;Published:23March2017. Editedby:RobertBrucker,RowlandInstituteatHarvard,USA Reviewedby:MarkJ.Mandel,NorthwesternUniversity,USADavidWilliamWaite,UniversityofQueensland,Australia Copyright©2017Zhang,Berg,Dierking,Félix,Shapira,SamuelandSchulenburg.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:MichaelShapira,[email protected],[email protected],[email protected] †Sharedfirstauthorship. ‡Sharedseniorauthorship. ThisarticleispartoftheResearchTopic Experimentalmodelsinanimal-associatedmicrobiota Viewall 36Articles Peoplealsolookedat Download



請為這篇文章評分?